47-H3C MSR系列路由器 MPLS基础典型配置举例
本章节下载: 47-H3C MSR系列路由器 MPLS基础典型配置举例 (310.81 KB)
H3C MSR系列路由器
MPLS基础配置举例
Copyright © 2022 新华三技术有限公司 版权所有,保留一切权利。
非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。
除新华三技术有限公司的商标外,本手册中出现的其它公司的商标、产品标识及商品名称,由各自权利人拥有。
本文档中的信息可能变动,恕不另行通知。
目 录
本文档介绍通过静态方式和LDP(Label Distribution Protocol,标签分发协议)方式建立LSP的典型配置举例。
本文档适用于使用Comware V9软件版本的MSR系列路由器,如果使用过程中与产品实际情况有差异,请参考相关产品手册,或以设备实际情况为准。
本文档中的配置均是在实验室环境下进行的配置和验证,配置前设备的所有参数均采用出厂时的缺省配置。如果您已经对设备进行了配置,为了保证配置效果,请确认现有配置和以下举例中的配置不冲突。
本文档假设您已了解静态MPLS和LDP特性。
如图3-1所示,运营商网络运行MPLS,Router A和Router C作为MPLS的边缘设备,现要求在172.20.2.0/24网段和172.16.2.0/24网段间,通过配置静态LSP隧道,使这两个网段中互访的报文能够通过LSP在MPLS网络中进行传输。
图3-1 配置静态LSP组网图
· 为了使设备能够按正确的路径转发MPLS报文,需要在手工配置LSP的标签时,确保上游LSR出标签的值就是下游LSR入标签的值。
· LSP是一种单向通道,为了实现数据的双向正常传输,需要在数据传输的两个方向上分别配置一条静态LSP,并指定各自的入节点、中间节点和出节点。
· 在静态LSP环境中,只需要Ingress节点上存在到达FEC目的地址的路由即可,Transit和Egress节点上无需存在到达FEC目的地址的路由,因此本例中使用简单的静态路由即可完成路由配置。
本举例是在MSR2630E-X1设备的R9119P16版本上进行配置和验证的。
· 通过静态路由配置路由信息时,如果静态路由指定的是出接口,则静态LSP必须指定相同的出接口;如果静态路由指定的是下一跳,则静态LSP必须指定相同的下一跳。
· 配置Ingress和Transit时,本地的公网地址不能被指定为下一跳。
· 由于MPLS功能会在原有报文上封装一层或多层标签,因此建议用户在使能某接口的MPLS功能后,将该接口的jumboframe帧功能开启,并根据实际应用和标签嵌套层数配置相应的帧长,避免某些报文因超长而被丢弃。
(1) 配置各接口的IP地址
按照图3-1配置各接口的IP地址和掩码,包括LoopBack接口,具体配置过程略。
(2) 配置静态路由,使两条LSP的Ingress节点上存在到达FEC目的地址的路由。
# 配置Router A。
<RouterA> system-view
[RouterA] ip route-static 172.16.2.0 24 10.1.1.2
# 配置Router C。
<RouterC> system-view
[RouterC] ip route-static 172.20.2.0 24 20.1.1.1
# 配置完成后,在Ingress设备上执行display ip routing-table命令,可以看到静态路由已生效。以Router A为例:
[RouterA] display ip routing-table
Destinations : 18 Routes : 18
Destination/Mask Proto Pre Cost NextHop Interface
0.0.0.0/32 Direct 0 0 127.0.0.1 InLoop0
1.1.1.9/32 Direct 0 0 127.0.0.1 InLoop0
10.1.1.0/24 Direct 0 0 10.1.1.1 GE0/0/2
10.1.1.0/32 Direct 0 0 10.1.1.1 GE0/0/2
10.1.1.1/32 Direct 0 0 127.0.0.1 InLoop0
10.1.1.255/32 Direct 0 0 10.1.1.1 GE0/0/2
127.0.0.0/8 Direct 0 0 127.0.0.1 InLoop0
127.0.0.0/32 Direct 0 0 127.0.0.1 InLoop0
127.0.0.1/32 Direct 0 0 127.0.0.1 InLoop0
127.255.255.255/32 Direct 0 0 127.0.0.1 InLoop0
172.16.2.0/24 Static 60 0 10.1.1.2 GE0/0/2
172.20.2.0/24 Direct 0 0 172.20.2.1 GE0/0/1
172.20.2.0/32 Direct 0 0 172.20.2.1 GE0/0/1
172.20.2.1/32 Direct 0 0 127.0.0.1 InLoop0
172.20.2.255/32 Direct 0 0 172.20.2.1 GE0/0/1
224.0.0.0/4 Direct 0 0 0.0.0.0 NULL0
224.0.0.0/24 Direct 0 0 0.0.0.0 NULL0
255.255.255.255/32 Direct 0 0 127.0.0.1 InLoop0
(3) 使能MPLS功能
# 配置Router A。
[RouterA] mpls lsr-id 1.1.1.9
[RouterA] interface gigabitethernet 0/0/2
[RouterA-GigabitEthernet0/0/2] mpls enable
[RouterA-GigabitEthernet0/0/2] quit
# 配置Router B。
[RouterB] mpls lsr-id 2.2.2.9
[RouterB] interface gigabitethernet 0/0/1
[RouterB-GigabitEthernet0/0/1] mpls enable
[RouterB-GigabitEthernet0/0/1] quit
[RouterB] interface gigabitethernet 0/0/2
[RouterB-GigabitEthernet0/0/2] mpls enable
[RouterB-GigabitEthernet0/0/2] quit
# 配置Router C。
[RouterC] mpls lsr-id 3.3.3.9
[RouterC] interface gigabitethernet 0/0/1
[RouterC-GigabitEthernet0/0/1] mpls enable
[RouterC-GigabitEthernet0/0/1] quit
(4) 创建从Router A到Router C的静态LSP
# 为Ingress节点Router A配置一条到目的地址172.16.2.1/24的静态LSP,LSP的名称为AtoC,下一跳地址为10.1.1.2,出标签为30。
[RouterA] static-lsp ingress AtoC destination 172.16.2.1 24 nexthop 10.1.1.2 out-label 30
# 为Transit节点Router B配置一条名为AtoC的静态LSP,入标签为30,下一跳地址为20.1.1.2,出标签为50。
[RouterB] static-lsp transit AtoC in-label 30 nexthop 20.1.1.2 out-label 50
# 为Egress节点 Router C上配置一条名为AtoC的静态LSP,入标签为50。
[RouterC] static-lsp egress AtoC in-label 50
(5) 创建从Router C到Router A的静态LSP
# 为Ingress节点Router C配置一条到目的地址172.20.2.1/24的静态LSP,LSP的名称为CtoA,下一跳地址为20.1.1.1,出标签为40。
[RouterC] static-lsp ingress CtoA destination 172.20.2.1 24 nexthop 20.1.1.1 out-label 40
# 为Transit节点Router B配置一条名为CtoA的静态LSP,入标签为40,下一跳地址为10.1.1.1,出标签为70。
[RouterB] static-lsp transit CtoA in-label 40 nexthop 10.1.1.1 out-label 70
# 为Egress节点 Router A配置一条名为CtoA的静态LSP,入标签为70。
[RouterA] static-lsp egress CtoA in-label 70
# 配置完成后,可以在各路由器上通过display mpls static-lsp命令查看静态LSP的信息。以Router A的显示信息为例:
[RouterA] display mpls static-lsp
Total: 2
Name FEC In/Out Label Nexthop/Out Interface State
AtoC 172.16.2.0/24 NULL/30 10.1.1.2 Up
CtoA -/- 70/NULL - Up
# 在Router A上检测Router A到Router C静态LSP的可达性。
[RouterA] ping mpls -a 172.20.2.1 ipv4 172.16.2.0 24
MPLS ping FEC 172.16.2.0/24 with 100 bytes of data:
100 bytes from 20.1.1.2: Sequence=1 time=3 ms
100 bytes from 20.1.1.2: Sequence=2 time=2 ms
100 bytes from 20.1.1.2: Sequence=3 time=2 ms
100 bytes from 20.1.1.2: Sequence=4 time=2 ms
100 bytes from 20.1.1.2: Sequence=5 time=27 ms
--- Ping statistics for FEC 172.16.2.0/24 ---
5 packets transmitted, 5 packets received, 0.0% packet loss
Round-trip min/avg/max = 2/7/27 ms
# 在Router C上检测Router C到Router A静态LSP的可达性。
[RouterC] ping mpls -a 172.16.2.1 ipv4 172.20.2.0 24
MPLS ping FEC 172.20.2.0/24 with 100 bytes of data:
100 bytes from 10.1.1.1: Sequence=1 time=3 ms
100 bytes from 10.1.1.1: Sequence=2 time=2 ms
100 bytes from 10.1.1.1: Sequence=3 time=2 ms
100 bytes from 10.1.1.1: Sequence=4 time=2 ms
100 bytes from 10.1.1.1: Sequence=5 time=27 ms
--- Ping statistics for FEC 172.20.2.0/24 ---
5 packets transmitted, 5 packets received, 0.0% packet loss
Round-trip min/avg/max = 2/7/27 ms
· Router A:
#
mpls lsr-id 1.1.1.9
#
interface LoopBack0
ip address 1.1.1.9 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 172.20.2.1 255.255.255.0
#
interface GigabitEthernet0/0/2
port link-mode route
ip address 10.1.1.1 255.255.255.0
mpls enable
#
ip route-static 172.16.2.0 24 10.1.1.2
#
static-lsp ingress AtoC destination 172.16.2.0 24 nexthop 10.1.1.2 out-label 30
static-lsp egress CtoA in-label 70
#
· Router B:
#
mpls lsr-id 2.2.2.9
#
interface LoopBack0
ip address 2.2.2.9 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 10.1.1.2 255.255.255.0
mpls enable
#
interface GigabitEthernet0/0/2
port link-mode route
ip address 20.1.1.1 255.255.255.0
mpls enable
#
static-lsp transit AtoC in-label 30 nexthop 20.1.1.2 out-label 50
static-lsp transit CtoA in-label 40 nexthop 10.1.1.1 out-label 70
#
· Router C:
#
mpls lsr-id 3.3.3.9
#
interface LoopBack0
ip address 3.3.3.9 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 20.1.1.2 255.255.255.0
mpls enable
#
interface GigabitEthernet0/0/2
port link-mode route
ip address 172.16.2.1 255.255.255.0
#
ip route-static 172.20.2.1 255.255.255.0 20.1.1.1
#
static-lsp ingress CtoA destination 172.20.2.0 24 nexthop 20.1.1.1 out-label 40
static-lsp egress AtoC in-label 50
#
如图4-1所示,在运营商网络的MPLS区域中,PE 1和PE 2之间有两条路由可达,现要求:
· 在MPLS网络中配置LDP协议,动态建立LSP,使192.168.10.0/24网段与192.168.20.0/24网段之间转发的报文沿建立的LSP转发。
· 缺省情况下,报文通过LSP 1路径传输;当P 1故障时,报文通过LSP 2路径传输。
· 所有设备上只允许目的地址为1.1.1.1/32、2.2.2.2/32、3.3.3.3/32、4.4.4.4/32、5.5.5.5/32、192.168.10.0/24和192.168.20.0/24的路由表项触发LDP建立LSP,其他路由表项不能触发LDP建立LSP,以避免建立的LSP数量过多,影响设备性能。
图4-1 动态LSP配置组网图
· 为了通过LDP动态创建LSP,需要配置路由协议,使得各设备间路由可达,本例中使用OSPF路由协议。
· 为了实现缺省情况下报文通过LSP 1路径传输,并且当P 1故障时,报文通过LSP 2路径传输,需要配置192.168.10.0/24和192.168.20.0/24之间的主路由为LSP 1,备份路由为LSP 2(本例通过配置OSPF路由协议来实现:使能OSPF协议后,会自动计算出LSP 1路径的开销小于LSP 2,所以走LSP 1)。
· 为了只允许目的地址为1.1.1.1/32、2.2.2.2/32、3.3.3.3/32、4.4.4.4/32、5.5.5.5/32、192.168.10.0/24和192.168.20.0/24的路由表项触发LDP建立LSP,需要配置LSP触发策略。
本举例是在MSR2630E-X1设备的R9119P16版本上进行配置和验证的。
(1) 配置各接口的IP地址
按照图4-1配置各接口的IP地址和掩码,包括LoopBack接口,具体配置过程略。
(2) 配置OSPF,以保证各路由器之间路由可达
# 配置PE 1。
[PE1] ospf 1
[PE1-ospf-1] area 0
[PE1-ospf-1-area-0.0.0.0] network 1.1.1.1 0.0.0.0
[PE1-ospf-1-area-0.0.0.0] network 12.12.12.0 0.0.0.255
[PE1-ospf-1-area-0.0.0.0] network 14.14.14.0 0.0.0.255
[PE1-ospf-1-area-0.0.0.0] network 192.168.10.0 0.0.0.255
[PE1-ospf-1-area-0.0.0.0] quit
[PE1-ospf-1] quit
# 配置P 1。
[P1] ospf 1
[P1-ospf-1] area 0
[P1-ospf-1-area-0.0.0.0] network 2.2.2.2 0.0.0.0
[P1-ospf-1-area-0.0.0.0] network 12.12.12.0 0.0.0.255
[P1-ospf-1-area-0.0.0.0] network 23.23.23.0 0.0.0.255
[P1-ospf-1-area-0.0.0.0] quit
[P1-ospf-1] quit
# 配置P 2。
[P2] ospf 1
[P2-ospf-1] area 0
[P2-ospf-1-area-0.0.0.0] network 4.4.4.4 0.0.0.0
[P2-ospf-1-area-0.0.0.0] network 14.14.14.0 0.0.0.255
[P2-ospf-1-area-0.0.0.0] network 45.45.45.0 0.0.0.255
[P2-ospf-1-area-0.0.0.0] quit
[P2-ospf-1] quit
# 配置P 3。
[P3] ospf 1
[P3-ospf-1] area 0
[P3-ospf-1-area-0.0.0.0] network 5.5.5.5 0.0.0.0
[P3-ospf-1-area-0.0.0.0] network 45.45.45.0 0.0.0.255
[P3-ospf-1-area-0.0.0.0] network 35.35.35.0 0.0.0.255
[P3-ospf-1-area-0.0.0.0] quit
[P3-ospf-1] quit
# 配置PE 2。
[PE2] ospf 1
[PE2-ospf-1] area 0
[PE2-ospf-1-area-0.0.0.0] network 3.3.3.3 0.0.0.0
[PE2-ospf-1-area-0.0.0.0] network 23.23.23.0 0.0.0.255
[PE2-ospf-1-area-0.0.0.0] network 35.35.35.0 0.0.0.255
[PE2-ospf-1-area-0.0.0.0] network 192.168.20.0 0.0.0.255
[PE2-ospf-1-area-0.0.0.0] quit
[PE2-ospf-1] quit
# 配置完成后,在各路由器上执行display ospf routing命令,可以看到相互之间都学到了到对方的路由。以PE 1为例:
[PE1] display ospf routing
OSPF Process 1 with Router ID 1.1.1.1
Routing Table
Routing for network
Destination Cost Type NextHop AdvRouter Area
45.45.45.0/24 2 Transit 14.14.14.4 5.5.5.5 0.0.0.0
35.35.35.0/24 3 Transit 14.14.14.4 5.5.5.5 0.0.0.0
35.35.35.0/24 3 Transit 12.12.12.2 5.5.5.5 0.0.0.0
192.168.10.0/24 1 Stub 192.168.10.1 1.1.1.1 0.0.0.0
5.5.5.5/32 2 Stub 14.14.14.4 5.5.5.5 0.0.0.0
14.14.14.0/24 1 Transit 14.14.14.1 4.4.4.4 0.0.0.0
23.23.23.0/24 2 Transit 12.12.12.2 3.3.3.3 0.0.0.0
4.4.4.4/32 1 Stub 14.14.14.4 4.4.4.4 0.0.0.0
3.3.3.3/32 2 Stub 12.12.12.2 3.3.3.3 0.0.0.0
12.12.12.0/24 1 Transit 12.12.12.1 2.2.2.2 0.0.0.0
2.2.2.2/32 1 Stub 12.12.12.2 2.2.2.2 0.0.0.0
1.1.1.1/32 0 Stub 1.1.1.1 1.1.1.1 0.0.0.0
192.168.20.0/24 3 Stub 12.12.12.2 3.3.3.3 0.0.0.0
Total nets: 13
Intra area: 13 Inter area: 0 ASE: 0 NSSA: 0
PE 1和P 1、P 2,P 2、P 3和PE 2之间应建立起OSPF邻居关系,执行display ospf peer verbose命令可以看到邻居达到FULL状态。以PE 1为例:
[PE1] display ospf peer verbose
OSPF Process 1 with Router ID 1.1.1.1
Neighbors
Area 0.0.0.0 interface 14.14.14.1(GigabitEthernet0/0/2)'s neighbors
Router ID: 4.4.4.4 Address: 14.14.14.4 GR state: Normal
State: Full Mode: Nbr is master Priority: 1
DR: 14.14.14.4 BDR: 14.14.14.1 MTU: 0
Options is 0x42 (-|O|-|-|-|-|E|-)
Dead timer due in 40 sec
Neighbor is up for 00:03:30
Authentication Sequence: [ 0 ]
Neighbor state change count: 6
BFD status: Disabled
Neighbors
Area 0.0.0.0 interface 12.12.12.1(GigabitEthernet0/0/1)'s neighbors
Router ID: 2.2.2.2 Address: 12.12.12.2 GR state: Normal
State: Full Mode: Nbr is master Priority: 1
DR: 12.12.12.2 BDR: 12.12.12.1 MTU: 0
Options is 0x42 (-|O|-|-|-|-|E|-)
Dead timer due in 36 sec
Neighbor is up for 00:03:24
Authentication Sequence: [ 0 ]
Neighbor state change count: 6
BFD status: Disabled
(3) 配置MPLS基本能力,并使能LDP
# 配置PE 1。
[PE1] mpls lsr-id 1.1.1.1
[PE1] mpls ldp
[PE1-ldp] quit
[PE1] interface gigabitethernet 0/0/1
[PE1-GigabitEthernet0/0/1] mpls enable
[PE1-GigabitEthernet0/0/1] mpls ldp enable
[PE1-GigabitEthernet0/0/1] quit
[PE1] interface gigabitethernet 0/0/2
[PE1-GigabitEthernet0/0/2] mpls enable
[PE1-GigabitEthernet0/0/2] mpls ldp enable
[PE1-GigabitEthernet0/0/2] quit
# 配置P 1。
[P1] mpls lsr-id 2.2.2.2
[P1] mpls ldp
[P1-ldp] quit
[P1] interface gigabitethernet 0/0/1
[P1-GigabitEthernet0/0/1] mpls enable
[P1-GigabitEthernet0/0/1] mpls ldp enable
[P1-GigabitEthernet0/0/1] quit
[P1] interface gigabitethernet 0/0/2
[P1-GigabitEthernet0/0/2] mpls enable
[P1-GigabitEthernet0/0/2] mpls ldp enable
[P1-GigabitEthernet0/0/2] quit
# 配置P 2。
[P2] mpls lsr-id 4.4.4.4
[P2] mpls ldp
[P2-ldp] quit
[P2] interface gigabitethernet 0/0/1
[P2-GigabitEthernet0/0/1] mpls enable
[P2-GigabitEthernet0/0/1] mpls ldp enable
[P2-GigabitEthernet0/0/1] quit
[P2] interface gigabitethernet 0/0/2
[P2-GigabitEthernet0/0/2] mpls enable
[P2-GigabitEthernet0/0/2] mpls ldp enable
[P2-GigabitEthernet0/0/2] quit
# 配置P 3。
[P3] mpls lsr-id 5.5.5.5
[P3] mpls ldp
[P3-ldp] quit
[P3] interface gigabitethernet 0/0/1
[P3-GigabitEthernet0/0/1] mpls enable
[P3-GigabitEthernet0/0/1] mpls ldp enable
[P3-GigabitEthernet0/0/1] quit
[P3] interface gigabitethernet 0/0/2
[P3-GigabitEthernet0/0/2] mpls enable
[P3-GigabitEthernet0/0/2] mpls ldp enable
[P3-GigabitEthernet0/0/2] quit
# 配置PE 2。
[PE2] mpls lsr-id 3.3.3.3
[PE2] mpls ldp
[PE2-ldp] quit
[PE2] interface gigabitethernet 0/0/1
[PE2-GigabitEthernet0/0/1] mpls enable
[PE2-GigabitEthernet0/0/1] mpls ldp enable
[PE2-GigabitEthernet0/0/1] quit
[PE2] interface gigabitethernet 0/0/2
[PE2-GigabitEthernet0/0/2] mpls enable
[PE2-GigabitEthernet0/0/2] mpls ldp enable
[PE2-GigabitEthernet0/0/2] quit
完成上述配置后,PE 1和P 1、P 2,P 2、P 3和PE 2之间的本地LDP会话建立成功。
在各设备上执行display mpls ldp peer命令,可以看到LDP的对等体情况。以PE 1为例:
[PE1] display mpls ldp peer
Total number of peers: 2
Peer LDP ID State Role GR MD5 KA Sent/Rcvd
2.2.2.2:0 Operational Passive Off Off 55/55
4.4.4.4:0 Operational Passive Off Off 6/6
(4) 配置LSP的触发策略,为目的地址为1.1.1.1/32、2.2.2.2/32、3.3.3.3/32、4.4.4.4/32、5.5.5.5/32、192.168.10.0/24和192.168.20.0/24的路由表项建立LSP
# 在PE 1上创建IP地址前缀列表PE1,并配置只有通过该列表过滤的路由表项能够触发LDP建立LSP。
[PE1] ip prefix-list PE1 index 10 permit 1.1.1.1 32
[PE1] ip prefix-list PE1 index 20 permit 2.2.2.2 32
[PE1] ip prefix-list PE1 index 30 permit 3.3.3.3 32
[PE1] ip prefix-list PE1 index 40 permit 4.4.4.4 32
[PE1] ip prefix-list PE1 index 50 permit 5.5.5.5 32
[PE1] ip prefix-list PE1 index 60 permit 192.168.10.0 24
[PE1] ip prefix-list PE1 index 70 permit 192.168.20.0 24
[PE1] mpls ldp
[PE1-ldp] lsp-trigger prefix-list PE1
[PE1-ldp] quit
# 在P 1上创建IP地址前缀列表P1,并配置只有通过该列表过滤的路由表项能够触发LDP建立LSP。
[P1] ip prefix-list P1 index 10 permit 1.1.1.1 32
[P1] ip prefix-list P1 index 20 permit 2.2.2.2 32
[P1] ip prefix-list P1 index 30 permit 3.3.3.3 32
[P1] ip prefix-list P1 index 40 permit 4.4.4.4 32
[P1] ip prefix-list P1 index 50 permit 5.5.5.5 32
[P1] ip prefix-list P1 index 60 permit 192.168.10.0 24
[P1] ip prefix-list P1 index 70 permit 192.168.20.0 24
[P1] mpls ldp
[P1-ldp] lsp-trigger prefix-list P1
[P1-ldp] quit
# 在P 2上创建IP地址前缀列表P2,并配置只有通过该列表过滤的路由表项能够触发LDP建立LSP。
[P2] ip prefix-list P2 index 10 permit 1.1.1.1 32
[P2] ip prefix-list P2 index 20 permit 2.2.2.2 32
[P2] ip prefix-list P2 index 30 permit 3.3.3.3 32
[P2] ip prefix-list P2 index 40 permit 4.4.4.4 32
[P2] ip prefix-list P2 index 50 permit 5.5.5.5 32
[P2] ip prefix-list P2 index 60 permit 192.168.10.0 24
[P2] ip prefix-list P2 index 70 permit 192.168.20.0 24
[P2] mpls ldp
[P2-ldp] lsp-trigger prefix-list P2
[P2-ldp] quit
# 在P 3上创建IP地址前缀列表P3,并配置只有通过该列表过滤的路由表项能够触发LDP建立LSP。
[P3] ip prefix-list P3 index 10 permit 1.1.1.1 32
[P3] ip prefix-list P3 index 20 permit 2.2.2.2 32
[P3] ip prefix-list P3 index 30 permit 3.3.3.3 32
[P3] ip prefix-list P3 index 40 permit 4.4.4.4 32
[P3] ip prefix-list P3 index 50 permit 5.5.5.5 32
[P3] ip prefix-list P3 index 60 permit 192.168.10.0 24
[P3] ip prefix-list P3 index 70 permit 192.168.20.0 24
[P3] mpls ldp
[P3-ldp] lsp-trigger prefix-list P3
[P3-ldp] quit
# 在PE 2上创建IP地址前缀列表PE 2,并配置只有通过该列表过滤的路由表项能够触发LDP建立LSP。
[PE2] ip prefix-list PE2 index 10 permit 1.1.1.1 32
[PE2] ip prefix-list PE2 index 20 permit 2.2.2.2 32
[PE2] ip prefix-list PE2 index 30 permit 3.3.3.3 32
[PE2] ip prefix-list PE2 index 40 permit 4.4.4.4 32
[PE2] ip prefix-list PE2 index 50 permit 5.5.5.5 32
[PE2] ip prefix-list PE2 index 60 permit 192.168.10.0 24
[PE2] ip prefix-list PE2 index 70 permit 192.168.20.0 24
[PE2] mpls ldp
[PE2-ldp] lsp-trigger prefix-list PE2
[PE2-ldp] quit
配置完成后,在PE 1上执行display mpls ldp lsp命令,查看LDP LSP的建立情况,可以看到去往192.168.20.0/24网段的LSP缺省下一跳指向P 1。
[PE1] display mpls ldp lsp
Status Flags: * - stale, L - liberal, B - backup
FECs: 7 Ingress LSPs: 5 Transit LSPs: 5 Egress LSPs: 2
FEC In/Out Label Nexthop OutInterface
1.1.1.1/32 3/-
-/1151(L)
-/1151(L)
2.2.2.2/32 -/3 12.12.12.2 GE0/0/1
1151/3 12.12.12.2 GE0/0/1
-/1150(L)
3.3.3.3/32 -/1150 12.12.12.2 GE0/0/1
1150/1150 12.12.12.2 GE0/0/1
-/1148(L)
4.4.4.4/32 -/1149(L)
-/3 14.14.14.4 GE0/0/2
1149/3 14.14.14.4 GE0/0/2
5.5.5.5/32 -/1148(L)
-/1149 14.14.14.4 GE0/0/2
1148/1149 14.14.14.4 GE0/0/2
192.168.10.0/24 1145/-
-/1146(L)
-/1146(L)
192.168.20.0/24 -/1147 12.12.12.2 GE0/0/1
1146/1147 12.12.12.2 GE0/0/1
-/1147(L)
# 使用MPLS ping检测MPLS LSP的有效性和可达性。
[PE1] ping mpls -a 192.168.10.1 ipv4 192.168.20.0 24
MPLS ping FEC 192.168.20.0/24 with 100 bytes of data:
100 bytes from 23.23.23.3: Sequence=1 time=2 ms
100 bytes from 23.23.23.3: Sequence=2 time=2 ms
100 bytes from 23.23.23.3: Sequence=3 time=2 ms
100 bytes from 23.23.23.3: Sequence=4 time=2 ms
100 bytes from 23.23.23.3: Sequence=5 time=2 ms
--- Ping statistics for FEC 192.168.20.0/24 ---
5 packets transmitted, 5 packets received, 0.0% packet loss
Round-trip min/avg/max = 2/2/2 ms
# 当P 1故障时,在PE 1上执行display mpls ldp lsp命令,查看LDP LSP的变化,可以看到去往192.168.20.0/24网段的LSP下一跳指向P 2。
[PE1] display mpls ldp lsp
Status Flags: * - stale, L - liberal, B - backup
FECs: 7 Ingress LSPs: 5 Transit LSPs: 5 Egress LSPs: 2
FEC In/Out Label Nexthop OutInterface
1.1.1.1/32 3/-
-/1150(L)
2.2.2.2/32 -/1149 14.14.14.4 GE0/0/2
1150/1149 14.14.14.4 GE0/0/2
3.3.3.3/32 -/1148 14.14.14.4 GE0/0/2
1147/1148 14.14.14.4 GE0/0/2
4.4.4.4/32 -/3 14.14.14.4 GE0/0/2
1149/3 14.14.14.4 GE0/0/2
5.5.5.5/32 -/1151 14.14.14.4 GE0/0/2
1148/1151 14.14.14.4 GE0/0/2
192.168.10.0/24 1151/-
-/1146(L)
-/1146(L)
192.168.20.0/24 -/1147 14.14.14.4 GE0/0/2
1146/1147 14.14.14.4 GE0/0/2
# 使用MPLS ping检测MPLS LSP的有效性和可达性。
[PE1] ping mpls -a 192.168.10.1 ipv4 192.168.20.0 24
MPLS ping FEC 192.168.20.0/24 with 100 bytes of data:
100 bytes from 35.35.35.3: Sequence=1 time=1 ms
100 bytes from 35.35.35.3: Sequence=2 time=1 ms
100 bytes from 35.35.35.3: Sequence=3 time=1 ms
100 bytes from 35.35.35.3: Sequence=4 time=1 ms
100 bytes from 35.35.35.3: Sequence=5 time=1 ms
--- Ping statistics for FEC 192.168.20.0/24 ---
5 packets transmitted, 5 packets received, 0.0% packet loss
Round-trip min/avg/max = 1/1/1 ms
· PE1:
#
ospf 1
area 0.0.0.0
network 1.1.1.1 0.0.0.0
network 12.12.12.0 0.0.0.255
network 14.14.14.0 0.0.0.255
network 192.168.10.0 0.0.0.255
#
mpls lsr-id 1.1.1.1
#
mpls ldp
lsp-trigger prefix-list PE1
#
interface LoopBack0
ip address 1.1.1.1 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 12.12.12.1 255.255.255.0
mpls enable
mpls ldp enable
#
interface GigabitEthernet0/0/2
port link-mode route
ip address 14.14.14.1 255.255.255.0
mpls enable
mpls ldp enable
#
interface GigabitEthernet0/0/3
port link-mode route
ip address 192.168.10.1 255.255.255.0
#
ip prefix-list PE1 index 10 permit 1.1.1.1 32
ip prefix-list PE1 index 20 permit 2.2.2.2 32
ip prefix-list PE1 index 30 permit 3.3.3.3 32
ip prefix-list PE1 index 40 permit 4.4.4.4 32
ip prefix-list PE1 index 50 permit 5.5.5.5 32
ip prefix-list PE1 index 60 permit 192.168.10.0 24
ip prefix-list PE1 index 70 permit 192.168.20.0 24
· P 1:
#
ospf 1
area 0.0.0.0
network 2.2.2.2 0.0.0.0
network 12.12.12.0 0.0.0.255
network 23.23.23.0 0.0.0.255
#
mpls lsr-id 2.2.2.2
#
mpls ldp
lsp-trigger prefix-list P1
#
interface LoopBack0
ip address 2.2.2.2 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 12.12.12.2 255.255.255.0
mpls enable
mpls ldp enable
#
interface GigabitEthernet0/0/2
port link-mode route
ip address 23.23.23.2 255.255.255.0
mpls enable
mpls ldp enable
#
ip prefix-list P1 index 10 permit 1.1.1.1 32
ip prefix-list P1 index 20 permit 2.2.2.2 32
ip prefix-list P1 index 30 permit 3.3.3.3 32
ip prefix-list P1 index 40 permit 4.4.4.4 32
ip prefix-list P1 index 50 permit 5.5.5.5 32
ip prefix-list P1 index 60 permit 192.168.10.0 24
ip prefix-list P1 index 70 permit 192.168.20.0 24
#
· P 2:
#
ospf 1
area 0.0.0.0
network 4.4.4.4 0.0.0.0
network 14.14.14.0 0.0.0.255
network 45.45.45.0 0.0.0.255
#
mpls lsr-id 4.4.4.4
#
mpls ldp
lsp-trigger prefix-list P2
#
interface LoopBack0
ip address 4.4.4.4 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 45.45.45.4 255.255.255.0
mpls enable
mpls ldp enable
#
interface GigabitEthernet0/0/2
port link-mode route
ip address 14.14.14.4 255.255.255.0
mpls enable
mpls ldp enable
#
ip prefix-list P2 index 10 permit 1.1.1.1 32
ip prefix-list P2 index 20 permit 2.2.2.2 32
ip prefix-list P2 index 30 permit 3.3.3.3 32
ip prefix-list P2 index 40 permit 4.4.4.4 32
ip prefix-list P2 index 50 permit 5.5.5.5 32
ip prefix-list P2 index 60 permit 192.168.10.0 24
ip prefix-list P2 index 70 permit 192.168.20.0 24
#
· P 3:
#
ospf 1
area 0.0.0.0
network 5.5.5.5 0.0.0.0
network 35.35.35.0 0.0.0.255
network 45.45.45.0 0.0.0.255
#
mpls lsr-id 5.5.5.5
#
mpls ldp
lsp-trigger prefix-list P3
#
interface LoopBack0
ip address 2.2.2.2 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 35.35.35.5 255.255.255.0
mpls enable
mpls ldp enable
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 45.45.45.5 255.255.255.0
mpls enable
mpls ldp enable
#
ip prefix-list P3 index 10 permit 1.1.1.1 32
ip prefix-list P3 index 20 permit 2.2.2.2 32
ip prefix-list P3 index 30 permit 3.3.3.3 32
ip prefix-list P3 index 40 permit 4.4.4.4 32
ip prefix-list P3 index 50 permit 5.5.5.5 32
ip prefix-list P3 index 60 permit 192.168.10.0 24
ip prefix-list P3 index 70 permit 192.168.20.0 24
#
· PE2:
#
ospf 1
area 0.0.0.0
network 3.3.3.3 0.0.0.0
network 23.23.23.0 0.0.0.255
network 33.0.0.0 0.0.0.255
network 192.168.20.0 0.0.0.255
#
mpls lsr-id 3.3.3.3
#
mpls ldp
lsp-trigger prefix-list PE2
#
interface LoopBack0
ip address 3.3.3.3 255.255.255.255
#
interface GigabitEthernet0/0/1
port link-mode route
ip address 35.35.35.3 255.255.255.0
mpls enable
mpls ldp enable
#
interface GigabitEthernet0/0/2
port link-mode route
ip address 23.23.23.3 255.255.255.0
mpls enable
mpls ldp enable
#
interface GigabitEthernet0/0/3
port link-mode route
ip address 192.168.20.1 255.255.255.0
#
ip prefix-list PE2 index 10 permit 1.1.1.1 32
ip prefix-list PE2 index 20 permit 2.2.2.2 32
ip prefix-list PE2 index 30 permit 3.3.3.3 32
ip prefix-list PE2 index 40 permit 4.4.4.4 32
ip prefix-list PE2 index 50 permit 5.5.5.5 32
ip prefix-list PE2 index 60 permit 192.168.10.0 24
ip prefix-list PE2 index 70 permit 192.168.20.0 24
#
· 《H3C MSR1000[2600][3600]路由器 配置指导(V9)》中的“MPLS配置指导”
· 《H3C MSR1000[2600][3600]路由器 配置指导(V9)》中的“MPLS命令参考”
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!