01-以太网链路聚合配置
本章节下载: 01-以太网链路聚合配置 (496.17 KB)
目 录
1.6.4 配置成员接口为工作在1:1主备模式的聚合组的主接口
1.6.5 配置工作于1:1主备模式聚合组的主接口延时回切功能
1.6.6 配置工作于1:1主备模式聚合组的备份接口处于DOWN状态
1.11 配置动态聚合组内端口速率作为优先选择参考端口的条件
以太网链路聚合通过将多条以太网物理链路捆绑在一起形成一条以太网逻辑链路,实现增加链路带宽的目的,同时这些捆绑在一起的链路通过相互动态备份,可以有效地提高链路的可靠性。
如图1-1所示,Device A与Device B之间通过三条以太网物理链路相连,将这三条链路捆绑在一起,就成为了一条逻辑链路Link aggregation 1。这条逻辑链路的带宽最大可等于三条以太网物理链路的带宽总和,增加了链路的带宽;同时,这三条以太网物理链路相互备份,当其中某条物理链路down,还可以通过其他两条物理链路转发报文。
链路捆绑是通过接口捆绑实现的,多个以太网接口捆绑在一起后形成一个聚合组,而这些被捆绑在一起的以太网接口就称为该聚合组的成员端口。每个聚合组唯一对应着一个逻辑接口,称为聚合接口。聚合组与聚合接口的编号是相同的,例如聚合组1对应于聚合接口1。
· 三层聚合组/三层聚合接口:三层聚合组的成员端口全部为三层以太网接口,其对应的聚合接口称为三层聚合接口。在创建了三层聚合接口之后,还可继续创建该三层聚合接口的子接口,即三层聚合子接口。三层聚合子接口处理与该子接口编号相同的VLAN的报文。
聚合接口的速率和双工模式取决于对应聚合组内的选中端口(请参见“1.1.2 2. 成员端口的状态”):聚合接口的速率等于所有选中端口的速率之和,聚合接口的双工模式则与选中端口的双工模式相同。
聚合组内的成员端口具有以下三种状态:
· 选中(Selected)状态:此状态下的成员端口可以参与数据的转发,处于此状态的成员端口称为“选中端口”。
· 非选中(Unselected)状态:此状态下的成员端口不能参与数据的转发,处于此状态的成员端口称为“非选中端口”。
· 独立(Individual)状态:此状态下的成员端口可以作为普通物理口参与数据的转发。满足以下条件时,如果成员端口在经过LACP(Link Aggregation Control Protocol,链路聚合控制协议)超时时间之后未收到LACP报文,则该成员端口会被置为该状态:
¡ 聚合接口配置为边缘端口。
¡ 处于选中/非选中状态的成员端口经过一次down、up后,该成员端口将被置为独立状态。
操作Key是系统在进行链路聚合时用来表征成员端口聚合能力的一个数值,它是根据成员端口上的一些信息(包括该端口的速率、双工模式等)的组合自动计算生成的,这个信息组合中任何一项的变化都会引起操作Key的重新计算。在同一聚合组中,所有的选中端口都必须具有相同的操作Key。
链路聚合分为静态聚合和动态聚合两种模式,它们各自的优点如下所示:
· 静态聚合模式:一旦配置好后,端口的选中/非选中状态就不会受网络环境的影响,比较稳定。
· 动态聚合模式:通过LACP协议实现,能够根据对端和本端的信息调整端口的选中/非选中状态,比较灵活。
处于静态聚合模式下的聚合组称为静态聚合组,处于动态聚合模式下的聚合组称为动态聚合组。
参考端口从本端的成员端口中选出,其操作Key和属性类配置将作为同一聚合组内的其他成员端口的参照,只有操作Key和属性类配置与参考端口一致的成员端口才能被选中。
对于聚合组内处于up状态的端口,按照端口的高端口优先级->全双工/高速率->全双工/低速率->半双工/高速率->半双工/低速率的优先次序,选择优先次序最高、且属性类配置与对应聚合接口相同的端口作为参考端口;如果多个端口优先次序相同,首先选择原来的选中端口作为参考端口;如果此时多个优先次序相同的端口都是原来的选中端口,则选择其中端口号最小的端口作为参考端口;如果多个端口优先次序相同,且都不是原来的选中端口,则选择其中端口号最小的端口作为参考端口。
静态聚合组内成员端口状态的确定流程如图1-2所示。
确定静态聚合组内成员端口状态时,需要注意:
· 当一个成员端口的操作Key或属性类配置改变时,其所在静态聚合组内各成员端口的选中/非选中状态可能会发生改变。
· 当静态聚合组内选中端口的数量已达到上限,对于后加入的成员端口和聚合组内选中端口的端口优先级:
¡ 全部相同时,后加入的成员端口即使满足成为选中端口的所有条件,也不会立即成为选中端口。这样能够尽量维持当前选中端口上的流量不中断,但是由于设备重启时会重新计算选中端口,因此可能导致设备重启前后各成员端口的选中/非选中状态不一致。
¡ 存在不同时,若后加入的成员端口的属性类配置与对应聚合接口相同,且端口优先级高于聚合组内选中端口的端口优先级,则端口优先级高的成员端口会立刻取代端口优先级低的选中端口成为新的选中端口。
动态聚合模式通过LACP协议实现,LACP协议的内容及动态聚合模式的工作机制如下所述。
基于IEEE802.3ad标准的LACP协议是一种实现链路动态聚合的协议,运行该协议的设备之间通过互发LACPDU来交互链路聚合的相关信息。
动态聚合组内的成员端口可以收发LACPDU(Link Aggregation Control Protocol Data Unit,链路聚合控制协议数据单元),本端通过向对端发送LACPDU通告本端的信息。当对端收到该LACPDU后,将其中的信息与所在端其他成员端口收到的信息进行比较,以选择能够处于选中状态的成员端口,使双方可以对各自接口的选中/非选中状态达成一致。
LACP协议的功能分为基本功能和扩展功能两大类,如表1-1所示。
表1-1 LACP协议的功能分类
类别 |
说明 |
基本功能 |
利用LACPDU的基本字段可以实现LACP协议的基本功能。基本字段包含以下信息:系统LACP优先级、系统MAC地址、端口优先级、端口编号和操作Key |
扩展功能 |
通过对LACPDU的字段进行扩展,可以实现对LACP协议的扩展 |
LACP工作模式分为ACTIVE和PASSIVE两种。
如果动态聚合组内成员端口的LACP工作模式为PASSIVE,且对端的LACP工作模式也为PASSIVE时,两端将不能发送LACPDU。如果两端中任何一端的LACP工作模式为ACTIVE时,两端将可以发送LACPDU。
根据作用的不同,可以将LACP优先级分为系统LACP优先级和端口优先级两类,如表1-2所示。
表1-2 LACP优先级的分类
类别 |
说明 |
比较标准 |
系统LACP优先级 |
用于区分两端设备优先级的高低。当两端设备中的一端具有较高优先级时,另一端将根据优先级较高的一端来选择本端的选中端口,这样便使两端设备的选中端口达成了一致 |
优先级数值越小,优先级越高 |
端口优先级 |
用于区分各成员端口成为选中端口的优先程度 |
LACP超时时间是指成员端口等待接收LACPDU的超时时间,在LACP超时时间之后,如果本端成员端口仍未收到来自对端的LACPDU,则认为对端成员端口已失效。
LACP超时时间同时也决定了对端发送LACPDU的速率。LACP超时有短超时(3秒)和长超时(90秒)两种。若LACP超时时间为短超时,则对端将快速发送LACPDU(每1秒发送1个LACPDU);若LACP超时时间为长超时,则对端将慢速发送LACPDU(每30秒发送1个LACPDU)。
端口加入聚合组的方式为:
· 手工动态聚合:两端设备成员端口手工加入动态聚合组。
· 半自动动态聚合:一端设备成员端口手工加入动态聚合组,另一端成员端口自动加入动态聚合组。
· 全自动动态聚合:两端设备开启LLDP功能和自动聚合功能后,两端端口自动加入动态聚合组。
在和服务器对接的时候,为了简化本端设备创建聚合组相关配置,可以在本端设备上配置半自动聚合,以便本端设备根据服务器的配置自动创建聚合组。
端口根据收到的LACP报文自动选择加入聚合组,如果本设备上没有可以加入的聚合组,设备会自动创建一个符合条件的聚合组。端口自动加入聚合组流程如图1-3所示。
创建一个符合条件的聚合组时,该聚合接口会同步最先加入聚合组的成员端口的属性类配置。
端口自动加入聚合组后,该聚合组选择参考端口和确定成员端口的状态与手工动态聚合组处理方式相同,请参见“1.1.7 动态聚合模式”。
开启LLDP功能和自动聚合功能后,当本端端口收到对端发来的LLDP报文,根据报文信息,自动创建一个聚合组,同时将连接相同对端设备的端口加入该聚合组。
创建一个符合条件的聚合组时,该聚合接口会同步最先加入聚合组的成员端口的属性类配置。
端口自动加入聚合组后,该聚合组选择参考端口和确定成员端口的状态与手工动态聚合组处理方式相同,请参见“1.1.7 动态聚合模式”。
全自动聚合和半自动聚合都是自动聚合的一种方式,建议用户不要混用两种方式,避免端口加入不同的聚合组,从而导致成员端口不被选中。
参考端口从聚合链路两端处于up状态的成员端口中选出,其操作Key和属性类配置将作为同一聚合组内的其他成员端口的参照,只有操作Key和属性类配置与参考端口一致的成员端口才能被选中。
· 首先,从聚合链路的两端选出设备ID(由系统的LACP优先级和系统的MAC地址共同构成)较小的一端:先比较两端的系统LACP优先级,优先级数值越小其设备ID越小;如果优先级相同再比较其系统MAC地址,MAC地址越小其设备ID越小。
· 其次,对于设备ID较小的一端,再比较其聚合组内各成员端口的端口ID(由端口优先级和端口号共同构成):先比较端口优先级,优先级数值越小其端口ID越小;如果优先级相同再比较其端口号,端口号越小其端口ID越小。端口ID最小、且属性类配置与对应聚合接口相同的端口作为参考端口。
端口号可以通过display link-aggregation verbose命令中的Index字段查看。
在设备ID较小的一端,动态聚合组内成员端口状态的确定流程如图1-4所示。
与此同时,设备ID较大的一端也会随着对端成员端口状态的变化,随时调整本端各成员端口的状态,以确保聚合链路两端成员端口状态的一致。
确定动态聚合组内成员端口状态时,需要注意:
· 仅全双工端口可成为选中端口。
· 当一个成员端口的操作Key或属性类配置改变时,其所在动态聚合组内各成员端口的选中/非选中状态可能会发生改变。
· 当本端端口的选中/非选中状态发生改变时,其对端端口的选中/非选中状态也将随之改变。
· 当动态聚合组内选中端口的数量已达到上限时,后加入的成员端口一旦满足成为选中端口的所有条件,就会立刻取代已不满足条件的端口成为选中端口。
在网络设备与服务器等终端设备相连的场景中,当网络设备配置了动态聚合模式,而终端设备未配置动态聚合模式时,聚合链路不能成功建立,网络设备与该终端设备相连多条链路中只能有一条作为普通链路正常转发报文,因而链路间也不能形成备份,当该普通链路发生故障时,可能会造成报文丢失。
若要求在终端设备未配置动态聚合模式时,该终端设备与网络设备间的链路可以形成备份,可通过配置网络设备与终端设备相连的聚合接口为聚合边缘接口,使该聚合组内的所有成员端口都作为普通物理口转发报文,从而保证终端设备与网络设备间的多条链路可以相互备份,增加可靠性。当终端设备完成动态聚合模式配置时,其聚合成员端口正常发送LACP报文后,网络设备上符合选中条件的聚合成员端口会自动被选中,从而使聚合链路恢复正常工作。
通过采用不同的聚合负载分担类型,可以实现灵活地对聚合组内流量进行负载分担。聚合负载分担的类型可以归为以下类型:
· 逐流负载分担:按照报文的源/目的服务端口、入端口、源/目的IP地址或MPLS标签中的一种或某几种的组合区分流,使属于同一数据流的报文从同一条成员链路上通过。设备还支持按照接口的带宽利用率对数据流进行负载分担。当数据流经过聚合组时,会选择聚合组内带宽利用率最低的接口转发;同一数据流在同一接口转发。
· 逐包负载分担:不区分数据流,而是以报文为单位,将流量分担到不同的成员链路上进行传输。
· 弹性负载分担:在链路增加或减少时,尽量少的切换链路上的流量,只有部分流量进行链路切换。例如,有一个聚合组中包含3条成员链路,根据聚合负载分担进行数据转发,其中一条链路故障无法转发数据时,未采用弹性负载分担情况下另外两条链路会重新分配流量。如果采用了弹性负载分担,另外两条链路上之前分配的流量不会发生变化,只是将故障链路上的流量大致均匀地分配到这两条链路上,这样对业务造成的影响较小。当故障链路恢复后,会从这两条链路卸载一部分流量到故障恢复的这条链路上,各链路的流量分配和故障前流量分配也不会完全一致。采用弹性负载分担后,如果链路没有增加或减少,则根据聚合缺省的负载分担方式对流量进行负载分担。
对于手工聚合和自动聚合,建议用户不要混用两种方式,避免端口加入不同的聚合组,从而导致成员端口不被选中。
以太网链路聚合配置任务如下:
(1) 配置设备ID
(2) 配置聚合方式
¡ 配置手工聚合
(3) (可选)配置聚合接口
终端设备未配置动态聚合模式时,使终端设备与网络设备间的链路可以形成备份。
(4) (可选)配置影响成员端口选中的功能
(5) (可选)配置聚合负载分担
(6) (可选)优化聚合组的流量转发
开启聚合流量重定向功能实现聚合链路上流量不中断。
(7) (可选)配置链路聚合与BFD联动
在动态聚合中,设备ID是选择参考端口的依据,即在设备ID较小的一端选择参考端口。
设备ID由LACP的系统MAC地址和系统优先级组成。设备ID的比较原则为:先比较两端的LACP系统优先级,优先级数值越小其设备ID越小;如果优先级相同再比较其系统MAC地址,MAC地址越小其设备ID越小。
LACP的系统MAC地址和系统优先级可以通过display link-aggregation verbose命令查看。
设备ID支持全局配置或在聚合组内配置两种方式:全局的配置对所有聚合组都有效,而聚合组内的配置只对当前聚合组有效。对于一个聚合组来说,优先采用该聚合组内的配置,只有该聚合组内未进行配置时,才采用全局的配置。
创建动态聚合组后,不建议修改LACP的系统MAC地址和系统优先级,避免影响动态聚合组成员端口的选中/非选中状态。
(1) 进入系统视图。
system-view
(2) 配置全局的LACP的系统MAC地址。
lacp system-mac mac-address
缺省情况下,LACP的系统MAC地址为设备的桥MAC地址。
(3) 配置全局的LACP的系统优先级。
lacp system-priority priority
缺省情况下,LACP的系统优先级为32768。
(4) 进入三层聚合接口视图。
interface route-aggregation interface-number
(5) 配置聚合接口的LACP的系统MAC地址。
port lacp system-mac mac-address
缺省情况下,LACP的系统MAC地址为设备的桥MAC地址。
(6) 配置聚合接口的LACP的系统优先级。
port lacp system-priority priority
缺省情况下,LACP的系统优先级为32768。
配置了下列功能的端口将不能加入三层聚合组:
· AC与交叉连接关联。有关AC与交叉连接关联的详细介绍请参见“MPLS配置指导”中的“MPLS L2VPN”。
· AC与VSI关联。有关AC与VSI关联的详细介绍请参见“MPLS配置指导”中的“VPLS”。
用户删除聚合接口时,系统将自动删除对应的聚合组,且该聚合组内的所有成员端口将全部离开该聚合组。
接口加入聚合组前,如果接口上的属性类配置和聚合接口不同,则该接口不能加入聚合组。
接口加入聚合组后,不能修改接口的属性类配置。
聚合接口上属性类配置发生变化时,会同步到成员端口上,同步失败时不会回退聚合接口上的配置。聚合接口配置同步到成员端口失败后,可能导致成员端口变为非选中状态,此时可以修改聚合接口上的配置,使成员端口重新选中。当聚合接口被删除后,同步成功的配置仍将保留在这些成员端口上。
在聚合接口上所作的协议类配置,只在当前聚合接口下生效;在成员端口上所作的协议类配置,只有当该成员端口退出聚合组后才能生效。
聚合链路的两端应配置相同的聚合模式。对于不同模式的聚合组,其选中端口存在如下限制:
· 对于静态聚合模式,用户需要保证在同一链路两端端口的选中/非选中状态的一致性,否则聚合功能无法正常使用。
· 对于动态聚合模式:
¡ 聚合链路两端的设备会自动协商同一链路两端的端口在各自聚合组内的选中/非选中状态,用户只需保证本端聚合在一起的端口的对端也同样聚合在一起,聚合功能即可正常使用。
¡ 如果聚合链路一端使用半自动动态聚合方式,则链路另外一端使用手工动态聚合方式。
(1) 进入系统视图。
system-view
(2) 创建三层聚合接口,并进入三层聚合接口视图。
interface route-aggregation interface-number
创建三层聚合接口后,系统将自动生成同编号的三层聚合组,且该聚合组缺省工作在静态聚合模式下。
(3) 配置聚合组工作在静态聚合模式下。
link-aggregation mode static
缺省情况下,聚合组工作在静态聚合模式下。
(4) 退回系统视图。
quit
(5) 将三层以太网接口加入聚合组。
a. 进入三层以太网接口视图。
interface interface-type interface-number
b. 将三层以太网接口加入聚合组。
port link-aggregation group group-id
多次执行此步骤可将多个三层以太网接口加入聚合组。
(6) (可选)配置端口优先级。
link-aggregation port-priority priority
缺省情况下,端口优先级为32768。
(1) 进入系统视图。
system-view
(2) 创建三层聚合接口,并进入三层聚合接口视图。
interface route-aggregation interface-number
创建三层聚合接口后,系统将自动生成同编号的三层聚合组,且该聚合组缺省工作在静态聚合模式下。
(3) 配置聚合组工作在动态聚合模式下。
link-aggregation mode dynamic
缺省情况下,聚合组工作在静态聚合模式下。
(4) 退回系统视图。
quit
(5) 将三层以太网接口加入聚合组。
a. 进入三层以太网接口视图。
interface interface-type interface-number
b. 将三层以太网接口加入聚合组。
port link-aggregation group { group-id | auto [ group-id ] }
多次执行此步骤可将多个三层以太网接口加入聚合组。
指定auto参数时,会开启端口的半自动聚合功能。当配置半自动聚合后,建议用户不要修改自动创建的聚合组及其成员端口的配置,避免影响半自动聚合功能。
(6) 配置端口的LACP工作模式。
¡ 配置端口的LACP工作模式为PASSIVE。
lacp mode passive
¡ 配置端口的LACP工作模式为ACTIVE。
undo lacp mode
缺省情况下,端口的LACP工作模式为ACTIVE。
(7) (可选)配置端口优先级。
link-aggregation port-priority priority
缺省情况下,端口优先级为32768。
(8) (可选)配置端口的LACP超时时间为短超时(3秒)。
lacp period short
缺省情况下,端口的LACP超时时间为长超时(90秒)。
CE(Customer Edge,用户网络边缘)双归接入运营商网络时,为了保证业务不中断,可以在CE上部署1:1主备模式静态聚合,为数据传输提供1:1链路备份。
如图1-5所示,在1:1主备模式下,一个静态聚合组只包含两个成员接口。一个成员接口为主接口,另外一个成员接口为备份接口。正常情况下,主接口处于选中状态,可以转发流量;备份接口处于非选中状态,不能转发流量。
图1-5 1:1主备模式静态聚合示意图
1:1主备模式链路聚合配置任务如下:
(1) 配置1:1主备模式静态聚合组
(2) (可选)配置成员接口为工作在1:1主备模式的聚合组的主接口
(3) (可选)配置工作于1:1主备模式聚合组的主接口延时回切功能
(4) (可选)配置工作于1:1主备模式聚合组的备份接口处于DOWN状态
(5) (可选)切换工作于1:1主备模式聚合组的主备接口
配置聚合组工作在1:1主备模式时,聚合组的成员端口不能大于两个。
(1) 进入系统视图。
system-view
(2) 创建三层聚合接口,并进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 配置静态聚合组工作在1:1主备模式。
link-aggregation mode static backup
(4) 退回系统视图。
quit
(5) 将三层以太网接口加入聚合组。
a. 进入三层以太网接口视图。
interface interface-type interface-number
b. 将三层以太网接口加入聚合组。
port link-aggregation group group-id
多次执行此步骤可将多个三层以太网接口加入聚合组。
(6) (可选)配置端口优先级。
link-aggregation port-priority priority
缺省情况下,端口优先级为32768。
配置聚合组工作在1:1主备模式后,仅主接口处于选中状态,可以转发流量,而备份接口处于非选中状态,不能转发流量。为保证业务可靠通信,建议通过本配置指定主接口。指定主接口后,主接口将具有回切功能,即主接口故障恢复后,可以立即切换为选中状态并转发流量。
当未通过本配置指定主接口时:
· 如果成员接口同时加入聚合组,则聚合组内的参考端口作为主接口转发流量。
· 如果成员接口依次加入聚合组,则聚合组内先选中的端口作为主接口转发流量。
当接口未加入聚合组或者聚合组未工作在1:1主备模式时,不能在接口下配置本功能。
聚合组工作在1:1主备模式下时,该聚合组只能有一个主接口。
(1) 进入系统视图。
system-view
(2) 进入三层以太网接口视图。
interface interface-type interface-number
(3) 成员接口为工作在1:1主备模式的聚合组的主接口。
link-aggregation primary-port
缺省情况下,成员接口非工作在1:1主备模式的聚合组的主接口。
工作于1:1主备模式聚合组的主接口由于故障而处于备用状态,当主接口故障恢复时需要回切到转发状态。缺省情况下,主接口故障恢复后可以立即切换为选中状态并转发流量。为了避免链路震荡引起主接口频繁切换,可以通过本功能配置主接口延时回切时间。
配置聚合组工作在1:1主备模式且指定主接口后,本功能才能生效。
(1) 进入系统视图。
system-view
(2) 进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 配置工作于1:1主备模式聚合组的主接口延时回切功能及延时回切时间。
link-aggregation reversion delay time-value
缺省情况下,工作于1:1主备模式聚合组的主接口延时回切功能处于关闭状态,即主接口故障恢复时可以立即转发流量。
配置聚合组工作在1:1主备模式后,如果对端设备无法感知本端的主备接口时,流量可能发送到本端备份接口,由于本端备份接口处于非选中状态,流量无法转发,导致丢包。为避免这种情况,可以配置本功能,仅使两端设备转发流量的接口保持UP状态,避免丢包。
配置聚合组工作在1:1主备模式后,本功能才能生效。
(1) 进入系统视图。
system-view
(2) 进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 配置工作于1:1主备模式聚合组的备份接口处于DOWN状态。
link-aggregation secondary-down
缺省情况下,工作于1:1主备模式聚合组的备份接口处于非选中状态。
当工作于1:1主备模式聚合组未配置主接口时,用户可以根据1:1主备模式聚合组对端设备转发流量的接口,随时切换主备接口。
配置本功能后,如果备份接口因为link-aggregation secondary-down命令而处于DOWN状态,则设备会将备份接口置为UP状态,使备份接口可以切换为主接口转发流量。
聚合组切换主备接口时,可能导致丢包,请谨慎配置本功能。
配置本功能前需要满足以下条件,否则无法切换:
· 工作于1:1主备模式聚合组未配置主接口。
· 工作于1:1主备模式聚合组中存在一个选中端口和一个非选中端口。
· 备份接口可以变为选中状态。
(1) 进入系统视图。
system-view
(2) 进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 切换工作于1:1主备模式聚合组的主备接口。
link-aggregation switchover
本节对能够在聚合接口上进行的部分配置进行介绍。除本节所介绍的配置外,能够在三层以太网接口上进行的配置大多数也能在三层聚合接口上进行,具体配置请参见相关的配置指导。
对聚合接口的开启/关闭操作,将会影响聚合接口对应的聚合组内成员端口的选中/非选中状态和链路状态:
· 关闭聚合接口时,将使对应聚合组内所有处于选中状态的成员端口都变为非选中端口,且所有成员端口的链路状态都将变为down。
· 开启聚合接口时,系统将重新计算对应聚合组内成员端口的选中/非选中状态。
当打开/关闭三层聚合接口时,会同时打开/关闭其下的所有子接口,而打开/关闭三层聚合子接口则不会对其主接口有影响。
有关description、bandwidth、shutdown命令的详细介绍,请参见“接口管理命令参考”中的“接口公共命令”。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
¡ 进入三层聚合接口视图。
interface route-aggregation interface-number
¡ 进入三层聚合子接口视图。
interface route-aggregation interface-number.subnumber
(3) 配置当前接口的描述信息。
description text
缺省情况下,接口的描述信息为“接口名 Interface”。
通过在接口上配置描述信息,可以方便网络管理员根据这些信息来区分各接口的作用。
(4) 配置当前接口的期望带宽。
bandwidth bandwidth-value
缺省情况下,未配置接口的期望带宽。
期望带宽供业务模块使用,不会对接口实际带宽造成影响。
(5) 关闭当前接口。
shutdown
缺省情况下,设备的接口处于开启状态。
执行本命令会导致使用该接口建立的链路中断,不能通信,请谨慎使用。
聚合接口在进行文件传输等大吞吐量数据交换的时候,接口收到的长度大于固定值的帧称为超长帧。缺省情况下,设备允许指定长度为1536的超长帧通过。
系统对于超长帧的处理如下:
· 如果系统配置了禁止超长帧通过(通过undo jumboframe enable命令配置),会直接丢弃该帧不再进行处理。
· 如果系统允许超长帧通过,当接口收到长度在指定范围内的超长帧时,系统会继续处理;当接口收到长度超过指定最大长度的超长帧时,系统会直接丢弃该帧不再进行处理。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
interface route-aggregation interface-number
(3) 允许超长帧通过。
jumboframe enable [ size ]
缺省情况下,设备允许指定长度为9664的超长帧通过。
多次执行该命令配置不同的size值时,最新的配置生效。
MTU(Maximum Transmission Unit,最大传输单元)参数会影响IP报文的分片与重组,可以通过下面的配置来改变MTU值。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
¡ 进入三层聚合接口视图。
interface route-aggregation interface-number
¡ 进入三层聚合子接口视图。
interface route-aggregation interface-number.subnumber
(3) 配置聚合接口的MTU值。
mtu size
缺省情况下,聚合接口的MTU值为1500字节。
该配置仅在聚合接口对应的聚合组为动态聚合组时生效。
当聚合接口配置为聚合边缘接口后,聚合流量重定向功能将不能正常使用,聚合流量重定向功能的相关介绍请参见“1.14 配置聚合流量重定向功能”。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
interface route-aggregation interface-number
(3) 配置聚合接口为聚合边缘接口。
lacp edge-port
缺省情况下,聚合接口不为聚合边缘接口。
开启本功能可能需要耗费大量系统资源,影响系统性能,请谨慎使用。
当三层聚合接口开启子接口速率统计功能后,设备会定时刷新子接口速率统计信息。
配置本功能后,需要等待两个统计周期,才能显示子接口的速率统计信息。统计周期可以通过flow-interval命令进行设置。有关flow-interval命令的详细介绍,请参见“接口管理命令参考”中的“以太网接口”。
(1) 进入系统视图。
system-view
(2) 进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 开启三层聚合子接口速率统计功能。
sub-interface rate-statistic
缺省情况下,三层聚合接口的子接口速率统计功能处于关闭状态。
(4) (可选)查看子接口速率统计结果。
display interface
接口下的某些配置恢复到缺省情况后,会对设备上当前运行的业务产生影响。建议您在执行本配置前,完全了解其对网络产生的影响。
您可以在执行default命令后通过display this命令确认执行效果。对于未能成功恢复缺省的配置,建议您查阅相关功能的命令手册,手工执行恢复该配置缺省情况的命令。如果操作仍然不能成功,您可以通过设备的提示信息定位原因。
有关default命令的详细介绍,请参见“接口管理命令参考”中的“接口公共命令”。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
¡ 进入三层聚合接口视图。
interface route-aggregation interface-number
¡ 进入三层聚合子接口视图。
interface route-aggregation interface-number.subnumber
(3) 恢复当前聚合接口的缺省配置。
default
用户可以根据不同的使用场景,灵活修改聚合组中最大和最小选中端口数,来满足不同需求。
· 最小选中端口数应用场景
聚合链路的带宽取决于聚合组内选中端口的数量,用户通过配置聚合组中的最小选中端口数,可以避免由于选中端口太少而造成聚合链路上的流量拥塞。当聚合组内选中端口的数量达不到配置值时,对应的聚合接口将不会up。具体实现如下:
¡ 如果聚合组内能够被选中的成员端口数小于配置值,这些成员端口都将变为非选中状态,对应聚合接口的链路状态也将变为down。
¡ 当聚合组内能够被选中的成员端口数增加至不小于配置值时,这些成员端口都将变为选中状态,对应聚合接口的链路状态也将变为up。
· 最大选中端口数应用场景
当配置了聚合组中的最大选中端口数之后,最大选中端口数将同时受配置值和设备硬件能力的限制,即取二者的较小值作为限制值。用户借此可实现两端口间的冗余备份:在一个聚合组中只添加两个成员端口,并配置该聚合组中的最大选中端口数为1,这样这两个成员端口在同一时刻就只能有一个成为选中端口,而另一个将作为备份端口。
同一聚合组内,最大选中端口数配置值不能小于最小选中端口数配置值。
(1) 进入系统视图。
system-view
(2) 进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 配置聚合组中的最小选中端口数。
link-aggregation selected-port minimum min-number
缺省情况下,聚合组中的最小选中端口数不受限制。
(4) 配置聚合组中的最大选中端口数。
link-aggregation selected-port maximum max-number [ lacp-sync ]
缺省情况下,聚合组中的最大选中端口数仅受设备硬件能力的限制。
对于静态聚合组,本端和对端配置的聚合组中的最大选中端口数必须一致。对于动态聚合组,不指定lacp-sync参数时,本端和对端配置的聚合组中的最大选中端口数必须一致;指定lacp-sync参数时,本端和对端聚合组中的最大选中端口数以配置值最小的一端为准。
缺省情况下,聚合组中最小选中端口数不受限制。聚合组中的最小选中端口数为配置本命令后计算的值(该聚合组所有成员端口×最小选中端口数的百分比)及link-aggregation selected-port minimum命令配置值中的较大值。
用户配置聚合组中最小选中端口数的百分比后,当有端口加入或者退出该聚合组时,可能会引起最小选中端口数的改变,导致聚合接口震荡。
以百分比方式配置聚合组中最小选中端口数时,建议用户不要配置最大选中端口数。由于最小选中端口数动态变化,所以无法满足最大选中端口数不能小于最小选中端口数的配置要求。
聚合组两端需要配置相同的百分比。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
interface route-aggregation interface-number
(3) 配置聚合组中最小选中端口数的百分比。
link-aggregation selected-port minimum percentage number
缺省情况下,未配置聚合组中最小选中端口数的百分比。
聚合成员端口缺省选中功能是指动态聚合组的成员端口处于up状态时,成员端口在经过LACP超时时间之后未收到LACPDU,则会在所有处于up状态的成员端口中选择一个作为选中端口。聚合组选择选中端口时比较各成员端口的端口ID,端口ID最小的作为选中端口。
关闭聚合成员端口缺省选中功能后,动态聚合组中处于up状态的成员端口未收到LACPDU时,将处于非选中状态。
(1) 进入系统视图。
system-view
(2) 关闭聚合成员端口缺省选中功能。
lacp default-selected-port disable
缺省情况下,聚合成员端口缺省选中功能处于开启状态。
缺省情况下,聚合组可能会将速率小的端口选择为参考端口。通过配置本功能,用户可以选择速率高的端口作为参考端口。
配置本功能后,动态聚合组内按照设备ID->端口速率->端口ID的优先次序选择参考端口。
本功能会改变动态聚合口的参考端口的选择条件,可能会导致短暂的业务中断。建议在业务正常传输情况下,不要随便更改参考端口的选择条件,需要修改参考端口的选择条件时,可以先关闭聚合接口,待两端配置一致后再开启该聚合接口。
(1) 进入系统视图。
system-view
(2) 进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 配置动态聚合组内端口速率作为优先选择参考端口的条件。
lacp select speed
缺省情况下,动态聚合组内以成员口的端口的端口ID作为优先选择参考端口的条件。
通过配置本命令,同一聚合组中的选中端口的端口速率可以不同。
如果聚合接口两端本命令配置不一致,动态聚合组可以通过LACP协议协商状态,使链路两端端口选中状态一致;静态聚合组无法协商状态,为了防止报文丢失,要求静态聚合组两端本命令配置一致。
配置本功能后,如果聚合组中选中端口速率不同,聚合组中流量负载分担时,速率较小的选中端口可能存在丢包现象,请按需配置本功能。
开启和关闭本功能后,操作Key会发生变化,导致聚合接口震荡,请按需配置本功能。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
interface route-aggregation interface-number
(3) 配置聚合组选择选中端口时忽略端口速率。
link-aggregation ignore speed
缺省情况下,聚合组选择选中端口时计算端口速率。
聚合负载分担类型支持全局配置或在聚合组内配置两种方式:全局的配置对所有聚合组都有效,而聚合组内的配置只对当前聚合组有效。对于一个聚合组来说,优先采用该聚合组内的配置,只有该聚合组内未进行配置时,才采用全局的配置。
(1) 进入系统视图。
system-view
(2) 配置全局采用的聚合负载分担类型。
link-aggregation global load-sharing mode { destination-ip | destination-mac | destination-port | mpls-label1 | source-ip | source-mac | source-port } *
缺省情况下,设备根据源IP地址和目的IP地址进行聚合负载分担。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
interface route-aggregation interface-number
(3) 配置聚合组内采用的聚合负载分担类型。
link-aggregation load-sharing mode { { destination-ip | destination-port | source-ip | source-port } * | bandwidth-usage | per-packet }
聚合组内采用的聚合负载分担类型与全局采用的聚合负载分担类型一致。
在MPLS L3VPN网络中,仅按照MPLS报文标签负载分担时可能达不到期望的负载分担效果。配置本功能后,设备会识别MPLS报文的内层信息,基于MPLS报文内层IPv4五元组(源IPv4地址、源端口号、协议号、目的IPv4地址、目的端口号)进行负载分担。具体的负载分担效果依赖配置的聚合负载分担类型。
本功能仅在P(Provider,服务提供商网络)设备上支持。有关P设备的介绍,请参见“MPLS配置指导”中的“MPLS L3VPN”。
MPLS L2VPN不建议开启该功能,目前还不能识别MPLS L2VPN报文中的五元组(源IP地址、源端口号、目的IP地址、目的端口号、协议号)。有关MPLS L2VPN的详细介绍,请参见“MPLS配置指导”中的“MPLS L2VPN”。
(1) 进入系统视图。
system-view
(2) 进入三层聚合接口视图。
interface route-aggregation interface-number
(3) 开启MPLS报文增强聚合负载分担功能。
link-aggregation load-sharing mpls enhanced
缺省情况下,MPLS报文增强聚合负载分担功能处于关闭状态。
在开启了聚合流量重定向功能后,当手工关闭聚合组内某选中端口时,系统可以将该端口上的流量重定向到其他选中端口上,从而实现聚合链路上流量的不中断。其中,已知单播报文可以实现零丢包,非已知单播报文不保证不丢包。聚合流量重定向过程中,对于聚合组中新选中的端口,流量不会重定向到该端口上。
聚合流量重定向功能支持全局配置或在聚合组内配置两种方式:全局的配置对所有聚合组都有效,而聚合组内的配置只对当前聚合组有效。对于一个聚合组来说,优先采用该聚合组内的配置,只有该聚合组内未进行配置时,才采用全局的配置。
必须在聚合链路两端都开启聚合流量重定向功能才能实现聚合链路上流量的不中断。
当聚合接口配置为聚合边缘接口后,聚合流量重定向功能将不能正常使用。
只有动态聚合组支持聚合流量重定向功能。
建议优先选择开启聚合接口的聚合流量重定向功能。开启全局的聚合流量重定向功能时,如果有连接其它厂商设备的聚合接口,可能影响该聚合组的正常通信。
(1) 进入系统视图。
system-view
(2) 开启聚合流量重定向功能。
link-aggregation lacp traffic-redirect-notification enable
缺省情况下,聚合流量重定向功能处于关闭状态。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
interface route-aggregation interface-number
(3) 开启聚合流量重定向功能。
link-aggregation lacp traffic-redirect-notification enable
缺省情况下,聚合流量重定向功能处于关闭状态。
链路聚合分为静态聚合和动态聚合两种模式,当链路发生故障时,静态聚合组没有检测机制来响应链路故障;动态聚合组通过LACP来判断链路状况,但这种方式不能快速响应链路故障。链路聚合使用BFD(Bidirectional Forwarding Detection,双向转发检测),能够为聚合组选中端口间的链路提供快速检测功能。通过为选中端口创建BFD会话来实现对成员链路故障的快速检测。当链路发生故障时,该功能能够快速使双方对各自接口的选中/非选中状态达成一致。关于BFD的介绍和基本功能配置,请参见“可靠性配置指导”中的“BFD”。
· 静态聚合:如果BFD检测到链路故障,系统会通知聚合模块对端不可达,将该链路连接端口的选中状态修改为非选中状态,BFD会话保留,并且会继续发送BFD报文;当故障链路恢复,能收到对端发送来的BFD报文时,系统会再通知聚合模块对端可达,端口又恢复为选中状态。即配置此功能后静态聚合链路不会出现一端为选中状态,另一端为非选中状态的情况。
· 动态聚合:如果BFD检测到链路故障,系统会通知聚合模块对端不可达,然后拆除BFD会话,并停止发送BFD报文;当故障链路恢复,通过LACP协议重新建立选中链路关系,并重建BFD会话,然后通知聚合模块对端已可达。从而使动态聚合组中成员端口选中状态快速收敛。
在与其他厂商设备互通的场景中,由于链路聚合与BFD联动功能实现方式不同,导致无法通过BFD快速检测链路故障。通过配置链路聚合与BFD联动的兼容模式,可以兼容其他厂商设备的链路聚合与BFD联动功能,使聚合链路两端可以通过BFD快速定位链路问题。
开启链路聚合与BFD联动的兼容功能后,聚合组所有成员端口都与对端建立BFD会话,且成员端口选中状态变化时,不会再拆除和重建BFD会话。
配置链路聚合与BFD联动时,需要注意:
· 两端聚合接口的BFD会话源地址和目的地址必须成对配置,且源地址和目的地址为不同的单播地址(0.0.0.0除外)。例如本端聚合接口配置link-aggregation bfd ipv4 source 1.1.1.1 destination 2.2.2.2时,对端聚合接口要配置link-aggregation bfd ipv4 source 2.2.2.2 destination 1.1.1.1后,才能正确建立起BFD会话。
· 在聚合接口下配置的BFD会话参数,会对该聚合组内所有选中链路的BFD会话生效,链路聚合的BFD会话仅支持控制报文方式和异步模式。
· 开启链路聚合的BFD功能后,不建议在该聚合接口上再开启其他应用与BFD联动。
· 开启链路聚合的BFD功能后,请配置聚合组中的成员端口数量不大于设备支持的BFD会话数量,否则可能导致聚合组内部分选中端口变为非选中状态。
· 如果聚合链路两端BFD会话数量不一致,请检查聚合链路两端的最大选中端口数配置是否一致。如果不一致,请将两端的最大端口数配置为一致。
· 在聚合接口下同时配置IPv4 BFD会话和IPv6 BFD会话后,当IPv4 BFD会话和IPv6 BFD会话其中之一检测到链路故障时,聚合组成员端口的状态变为非选中状态。
(1) 进入系统视图。
system-view
(2) 进入聚合接口视图。
interface route-aggregation interface-number
(3) (可选)开启链路聚合与BFD联动的兼容功能。
link-aggregation bfd-compatible enable
缺省情况下,链路聚合与BFD联动的兼容功能处于关闭状态。
(4) 开启链路聚合的BFD功能。
link-aggregation bfd ipv4 source ipv4-address destination ipv4-address
缺省情况下,链路聚合的BFD功能处于关闭状态。
可在任意视图下执行以下命令:
· 显示聚合接口的相关信息。
display interface [ route-aggregation [ interface-number ] ] [ brief [ description | down ] ]
· 显示所有聚合组的摘要信息。
display link-aggregation summary
· 显示已有聚合接口所对应聚合组的详细信息。
display link-aggregation verbose [ route-aggregation [ interface-number ] ] [ all-configuration ]
· 显示成员端口上链路聚合的详细信息。
display link-aggregation member-port [ interface-list | auto ]
· 显示聚合组成员端口的选中状态及原因。
display link-aggregation troubleshooting [ route-aggregation [ interface-number ] ]
可在任意视图下执行以下命令,显示本端系统设备ID。
display lacp system-id
可在任意视图下执行以下命令:
· 显示全局或聚合组内采用的聚合负载分担类型。
display link-aggregation load-sharing mode [ interface [ route-aggregation interface-number ] ]
本节所有命令的详细介绍,请参见“接口管理命令参考”中的“接口公共命令”。
可在任意视图下执行以下命令:
· 显示接口的流量统计信息。
display counters { inbound | outbound } interface [ route-aggregation [ interface-number ] ]
· 显示最近一个抽样间隔内处于up状态的接口的报文速率统计信息。
display counters rate { inbound | outbound } interface [ route-aggregation [ interface-number ] ]
请在用户视图下执行以下命令,清除聚合接口的统计信息。
reset counters interface [ route-aggregation [ interface-number ] ]
请在用户视图下执行以下命令,清除成员端口上的LACP统计信息。
reset lacp statistics [ interface interface-list ]
· Device A与Device B通过各自的三层以太网接口GigabitEthernet0/0/1~GigabitEthernet0/0/3相互连接。
· 在Device A和Device B上分别配置三层静态链路聚合组,并为对应的三层聚合接口配置IP地址和子网掩码。
图1-6 三层静态聚合配置组网图
(1) 配置Device A
# 创建三层聚合接口1,并为该接口配置IP地址和子网掩码。
<DeviceA> system-view
[DeviceA] interface route-aggregation 1
[DeviceA-Route-Aggregation1] ip address 192.168.1.1 24
[DeviceA-Route-Aggregation1] quit
# 分别将接口GigabitEthernet0/0/1至GigabitEthernet0/0/3加入到聚合组1中。
[DeviceA] interface gigabitethernet 0/0/1
[DeviceA-GigabitEthernet0/0/1] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/1] quit
[DeviceA] interface gigabitethernet 0/0/2
[DeviceA-GigabitEthernet0/0/2] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/2] quit
[DeviceA] interface gigabitethernet 0/0/3
[DeviceA-GigabitEthernet0/0/3] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/3] quit
(2) 配置Device B
Device B的配置与Device A相似,配置过程略。
# 查看Device A上所有聚合组的详细信息。
[DeviceA] display link-aggregation verbose
Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing
Port Status: S -- Selected, U -- Unselected, I -- Individual
Port: A -- Auto port, M -- Management port, R -- Reference port
Flags: A -- LACP_Activity, B -- LACP_Timeout, C -- Aggregation,
D -- Synchronization, E -- Collecting, F -- Distributing,
G -- Defaulted, H -- Expired
Role: P -- Primary, S -- Secondary
Aggregate Interface: Route-Aggregation1
Aggregation Mode: Static
Loadsharing Type: Shar
Management VLANs: None
Port Status Priority Oper-Key
GE0/0/1(R) S 32768 1
GE0/0/2 S 32768 1
GE0/0/3 S 32768 1
以上信息表明,聚合组1为负载分担类型的三层静态聚合组,包含有三个选中端口。
· Device A与Device B通过各自的三层以太网接口GigabitEthernet0/0/1~GigabitEthernet0/0/3相互连接。
· 在Device A和Device B上分别配置三层动态链路聚合组,并为对应的三层聚合接口配置IP地址和子网掩码。
图1-7 三层动态聚合配置组网图
(1) 配置Device A
# 创建三层聚合接口1,配置该接口为动态聚合模式,并为其配置IP地址和子网掩码。
<DeviceA> system-view
[DeviceA] interface route-aggregation 1
[DeviceA-Route-Aggregation1] link-aggregation mode dynamic
[DeviceA-Route-Aggregation1] ip address 192.168.1.1 24
[DeviceA-Route-Aggregation1] quit
# 分别将接口GigabitEthernet0/0/1至GigabitEthernet0/0/3加入到聚合组1中。
[DeviceA] interface gigabitethernet 0/0/1
[DeviceA-GigabitEthernet0/0/1] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/1] quit
[DeviceA] interface gigabitethernet 0/0/2
[DeviceA-GigabitEthernet0/0/2] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/2] quit
[DeviceA] interface gigabitethernet 0/0/3
[DeviceA-GigabitEthernet0/0/3] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/3] quit
(2) 配置Device B
Device B的配置与Device A相似,配置过程略。
# 查看Device A上所有聚合组的详细信息。
[DeviceA] display link-aggregation verbose
Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing
Port Status: S -- Selected, U -- Unselected, I -- Individual
Port: A -- Auto port, M -- Management port, R -- Reference port
Flags: A -- LACP_Activity, B -- LACP_Timeout, C -- Aggregation,
D -- Synchronization, E -- Collecting, F -- Distributing,
G -- Defaulted, H -- Expired
Role: P -- Primary, S -- Secondary
Aggregate Interface: Route-Aggregation1
Creation Mode: Manual
Aggregation Mode: Dynamic
Loadsharing Type: Shar
Management VLANs: None
System ID: 0x8000, 000f-e267-6c6a
Local:
Port Status Priority Index Oper-Key Flag
GE0/0/1(R) S 32768 11 1 {ACDEF}
GE0/0/2 S 32768 12 1 {ACDEF}
GE0/0/3 S 32768 13 1 {ACDEF}
Remote:
Actor Priority Index Oper-Key SystemID Flag
GE0/0/1 32768 81 1 0x8000, 000f-e267-57ad {ACDEF}
GE0/0/2 32768 82 1 0x8000, 000f-e267-57ad {ACDEF}
GE0/0/3 32768 83 1 0x8000, 000f-e267-57ad {ACDEF}
以上信息表明,聚合组1为负载分担类型的三层动态聚合组,包含有三个选中端口。
· Device A与Device B通过各自的三层以太网接口GigabitEthernet0/0/1~GigabitEthernet0/0/4相互连接。
· 在Device A和Device B上分别配置两个三层静态链路聚合组,并为对应的三层聚合接口都配置IP地址和子网掩码。
· 通过在聚合组1上按照源IP地址进行聚合负载分担、在聚合组2上按照目的IP地址进行聚合负载分担的方式,来实现数据流量在各成员端口间的负载分担。
三层聚合负载分担配置组网图
(1) 配置Device A
# 创建三层聚合接口1,配置该接口对应的聚合组内按照源IP地址进行聚合负载分担,并为其配置IP地址和子网掩码。
<DeviceA> system-view
[DeviceA] interface route-aggregation 1
[DeviceA-Route-Aggregation1] link-aggregation load-sharing mode source-ip
[DeviceA-Route-Aggregation1] ip address 192.168.1.1 24
[DeviceA-Route-Aggregation1] quit
# 分别将接口GigabitEthernet0/0/1和GigabitEthernet0/0/2加入到聚合组1中。
[DeviceA] interface gigabitethernet 0/0/1
[DeviceA-GigabitEthernet0/0/1] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/1] quit
[DeviceA] interface gigabitethernet 0/0/2
[DeviceA-GigabitEthernet0/0/2] port link-aggregation group 1
[DeviceA-GigabitEthernet0/0/2] quit
# 创建三层聚合接口2,配置该接口对应的聚合组内按照目的IP地址进行聚合负载分担,并为其配置IP地址和子网掩码。
[DeviceA] interface route-aggregation 2
[DeviceA-Route-Aggregation2] link-aggregation load-sharing mode destination-ip
[DeviceA-Route-Aggregation2] ip address 192.168.2.1 24
[DeviceA-Route-Aggregation2] quit
# 分别将接口GigabitEthernet0/0/3和GigabitEthernet0/0/4加入到聚合组2中。
[DeviceA] interface gigabitethernet 0/0/3
[DeviceA-GigabitEthernet0/0/3] port link-aggregation group 2
[DeviceA-GigabitEthernet0/0/3] quit
[DeviceA] interface gigabitethernet 0/0/4
[DeviceA-GigabitEthernet0/0/4] port link-aggregation group 2
[DeviceA-GigabitEthernet0/0/4] quit
(2) 配置Device B
Device B的配置与Device A相似,配置过程略。
# 查看Device A上所有聚合组的详细信息。
[DeviceA] display link-aggregation verbose
Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing
Port Status: S -- Selected, U -- Unselected, I -- Individual
Port: A -- Auto port, M -- Management port, R -- Reference port
Flags: A -- LACP_Activity, B -- LACP_Timeout, C -- Aggregation,
D -- Synchronization, E -- Collecting, F -- Distributing,
G -- Defaulted, H -- Expired
Role: P -- Primary, S -- Secondary
Aggregate Interface: Route-Aggregation1
Aggregation Mode: Static
Loadsharing Type: Shar
Management VLANs: None
Port Status Priority Oper-Key
GE0/0/1(R) S 32768 1
GE0/0/2 S 32768 1
Aggregate Interface: Route-Aggregation2
Aggregation Mode: Static
Loadsharing Type: Shar
Management VLANs: None
Port Status Priority Oper-Key
GE0/0/3(R) S 32768 2
GE0/0/4 S 32768 2
以上信息表明,聚合组1和聚合组2都是负载分担类型的三层静态聚合组,各包含有两个选中端口。
# 查看Device A上所有聚合接口所对应聚合组内采用的聚合负载分担类型。
[DeviceA] display link-aggregation load-sharing mode interface
Route-Aggregation1 Load-Sharing Mode:
source-ip address
Route-Aggregation2 Load-Sharing Mode:
destination-ip address
以上信息表明,三层聚合组1按照报文的源IP地址进行聚合负载分担,三层聚合组2按照报文的目的IP地址进行聚合负载分担。
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!