- Table of Contents
- Related Documents
-
Title | Size | Download |
---|---|---|
02-EVPN VXLAN configuration | 570.02 KB |
Contents
Assignment of traffic to VXLANs
Centralized EVPN gateway deployment
Distributed EVPN gateway deployment
Restrictions and guidelines: VXLAN tunnel assignment
Restrictions and guidelines for VXLAN configuration on a VSI
Configuring BGP to advertise BGP EVPN routes
Restrictions and guidelines for BGP EVPN route advertisement
Enabling BGP to advertise BGP EVPN routes
Configuring optimal route selection and route advertisement settings
Configuring a centralized EVPN gateway
Configuring a distributed EVPN gateway
Restrictions and guidelines for distributed EVPN gateway configuration
Configuring an L3 VXLAN ID for a VSI interface
Configuring IP prefix route advertisement
Managing remote MAC address entries and remote ARP learning
Disabling remote MAC address learning and remote ARP or ND learning
Disabling MAC address advertisement
Enabling MAC mobility event suppression
Disabling learning of MAC addresses from ARP or ND information
Disabling ARP information advertisement
Enabling ARP mobility event suppression
Configuring BGP EVPN route redistribution and advertisement
Redistributing MAC/IP advertisement routes into BGP unicast routing tables
Enabling BGP EVPN route advertisement to the local site
Confining floods to the local site
Enabling ARP flood suppression
Enabling packet statistics for VXLAN tunnels
Display and maintenance commands for EVPN VXLAN
EVPN VXLAN configuration examples
Example: EVPN VXLAN Layer 2 forwarding
Example: Configuring a centralized IPv4 EVPN gateway
Example: Configuring distributed IPv4 EVPN gateways
Example: Configuring IPv4 EVPN VXLAN multihoming
Configuring EVPN VXLAN
About EVPN VXLAN
EVPN VXLAN uses EVPN routes for VXLAN tunnel establishment and assignment and MAC reachability information advertisement in the control plane and uses VXLAN for forwarding in the data plane.
EVPN VXLAN network model
As shown in Figure 1, EVPN uses the VXLAN technology for traffic forwarding in the data plane. The transport edge devices assign VMs to different VXLANs, and then forward traffic between sites for VMs by using VXLAN tunnels. The transport edge devices are VXLAN tunnel endpoints (VTEPs). They can be servers that host VMs or independent network devices.
A VTEP uses ESs, VSIs, and VXLAN tunnels to provide VXLAN services:
· Ethernet segment (ES)—An ES is a link that connects a site to a VTEP. Each ES is uniquely identified by an Ethernet segment identifier (ESI).
· VSI—A virtual switch instance is a virtual Layer 2 switched domain. Each VSI provides switching services only for one VXLAN. VSIs learn MAC addresses and forward frames independently of one another. VMs in different sites have Layer 2 connectivity if they are in the same VXLAN. A VXLAN is identified by a 24-bit VXLAN ID which is also called the virtual network identifier (VNI). A VXLAN corresponds to an EVPN instance.
· VXLAN tunnel—A VXLAN tunnel is a logical point-to-point tunnel between VTEPs over the transport network. Each VXLAN tunnel can trunk multiple VXLANs.
All VXLAN processing is performed on VTEPs. The ingress VTEP encapsulates VXLAN traffic in the VXLAN, outer UDP, and outer IP headers, and forwards the traffic through VXLAN tunnels. The egress VTEP removes the VXLAN encapsulation and forwards the traffic to the destination. Transport network devices (for example, the P device in Figure 1) forward VXLAN traffic only based on the outer IP header of VXLAN packets.
Figure 1 EVPN VXLAN network model
Configuration automation
If EVPN is used for Layer 2 forwarding, VTEPs use the following BGP EVPN routes to discover VTEP neighbors, establish VXLAN tunnels, and assign the tunnels to VXLANs:
· IMET route—VTEPs advertise their VXLAN IDs through IMET routes. If two VTEPs have the same VXLAN ID, they automatically establish a VXLAN tunnel and assign the tunnel to the VXLAN.
· MAC/IP advertisement route—VTEPs advertise local MAC addresses and VXLAN IDs through MAC/IP advertisement routes. If two VTEPs have the same VXLAN ID, they automatically establish a VXLAN tunnel and assign the tunnel to the VXLAN.
If EVPN is used for Layer 3 forwarding, VTEPs use the following BGP EVPN routes to discover VTEP neighbors, establish VXLAN tunnels, and assign the tunnels to VXLANs:
· IMET route—VTEPs advertise the VXLAN IDs they have through IMET routes. If two VTEPs have the same VXLAN ID, they automatically establish a VXLAN tunnel and assign the tunnel to the VXLAN.
· MAC/IP advertisement route and IP prefix advertisement route—In the EVPN gateway deployment, VTEPs advertise MAC/IP advertisement routes or IP prefix advertisement routes which carry the export targets. When a VTEP receives a route, it compares the export targets of the route with the local import targets. If the route targets match, the VTEP establishes a VXLAN tunnel with the remote VTEP and associates the tunnel with the L3 VXLAN ID of the corresponding VPN instance. For more information about the L3 VXLAN ID, see "Distributed EVPN gateway deployment."
Assignment of traffic to VXLANs
Traffic from the local site to a remote site
The VTEP uses an Ethernet service instance or Layer 3 interface to match a list of VLANs on a site-facing interface. The VTEP assigns customer traffic to a VXLAN by mapping the Layer 3 interface or Ethernet service instance to a VSI. An Ethernet service instance or Layer 3 interface is identical to an attachment circuit (AC) in L2VPN.
As shown in Figure 2, Ethernet service instance 1 matches VLAN 2 and is mapped to VSI A (VXLAN 10). When a frame from VLAN 2 arrives, the VTEP assigns the frame to VXLAN 10 and looks up VSI A's MAC address table for the outgoing interface.
Figure 2 Identifying traffic from the local site
Traffic from a remote site to the local site
When a VXLAN packet arrives at a VXLAN tunnel interface, the VTEP uses the VXLAN ID in the packet to identify its VXLAN.
Layer 2 forwarding
MAC learning
The VTEP performs Layer 2 forwarding based on a VSI's MAC address table. The VTEP learns MAC addresses by using the following methods:
· Local MAC learning—The VTEP automatically learns the source MAC addresses of frames sent from the local site. The outgoing interfaces of local MAC address entries are site-facing interfaces on which the MAC addresses are learned.
· Remote MAC learning—The VTEP uses MP-BGP to advertise local MAC reachability information to remote sites and learn MAC reachability information from remote sites. The outgoing interfaces of MAC address entries advertised from a remote site are VXLAN tunnel interfaces.
Unicast
As shown in Figure 3, the VTEP performs typical Layer 2 forwarding for known unicast traffic within the local site.
As shown in Figure 4, the following process applies to a known unicast frame between sites:
1. The source VTEP encapsulates the Ethernet frame in the VXLAN/UDP/IP header.
In the outer IP header, the source IP address is the source VTEP's VXLAN tunnel source IP address. The destination IP address is the VXLAN tunnel destination IP address.
2. The source VTEP forwards the encapsulated packet out of the outgoing VXLAN tunnel interface found in the VSI's MAC address table.
3. The intermediate transport devices (P devices) forward the packet to the destination VTEP by using the outer IP header.
4. The destination VTEP removes the headers on top of the inner Ethernet frame. It then performs MAC address table lookup in the VXLAN's VSI to forward the frame out of the matching outgoing interface.
Flood
As shown in Figure 5, a VTEP floods a broadcast, multicast, or unknown unicast frame to all site-facing interfaces and VXLAN tunnels in the VXLAN, except for the incoming interface. The source VTEP replicates the flood frame, and then sends one replica to the destination IP address of each VXLAN tunnel in the VXLAN. Each destination VTEP floods the inner Ethernet frame to all the site-facing interfaces in the VXLAN. To avoid loops, the destination VTEPs do not flood the frame to VXLAN tunnels.
Figure 5 Forwarding of flood traffic
Centralized EVPN gateway deployment
Centralized EVPN gateway deployment uses one VTEP to provide Layer 3 forwarding for VXLANs. The VTEP uses virtual Layer 3 VSI interfaces as gateway interfaces for VXLANs. Typically, the gateway-collocated VTEP connects to other VTEPs and the external network. To use this design, make sure the gateway has sufficient bandwidth and processing capability. A centralized EVPN gateway can provide services only for IPv4 sites.
As shown in Figure 6, a VTEP acts as a gateway for VMs in the VXLANs. The VTEP both terminates the VXLANs and performs Layer 3 forwarding for the VMs. The network uses the following process to forward Layer 3 traffic from a VM to the destination:
1. The VM sends an ARP request to obtain the MAC address of the VSI interface that acts as the gateway, and then sends the Layer 3 traffic to the centralized EVPN gateway.
2. The local VTEP looks up the matching VSI's MAC address table and forwards the traffic to the centralized EVPN gateway through a VXLAN tunnel.
3. The centralized EVPN gateway removes the VXLAN encapsulation and forwards the traffic at Layer 3.
4. The centralized EVPN gateway forwards the replies sent by the destination node to the VM based on the ARP entry for the VM.
Figure 6 Example of centralized EVPN gateway deployment
Distributed EVPN gateway deployment
About distributed EVPN gateway deployment
Distributed EVPN gateway deployment deploys one EVPN gateway on each VTEP to provide Layer 3 forwarding for VXLANs at their respective sites. The gateways use virtual Layer 3 VSI interfaces as gateway interfaces for VXLANs. This design distributes the Layer 3 traffic load across VTEPs. However, its configuration is more complex than the centralized EVPN gateway design. A distributed EVPN gateway can provide services for IPv4 sites.
As shown in Figure 7, each site's VTEP acts as a gateway to perform Layer 3 forwarding for the VXLANs of the local site. A VTEP acts as a border gateway to the Layer 3 network for the VXLANs.
Figure 7 Distributed EVPN gateway placement design
Symmetric IRB
A distributed EVPN gateway uses symmetric IRB for Layer 3 forwarding, which means both the ingress and egress gateways perform Layer 2 and Layer 3 lookups. Symmetric IRB introduces the following concepts:
· L3 VXLAN ID—Also called L3 VNI. An L3 VXLAN ID identifies the traffic of a routing domain where devices have Layer 3 reachability. An L3 VXLAN ID is associated with one VPN instance. Distributed EVPN gateways use VPN instances to isolate traffic of different services on VXLAN tunnel interfaces.
· Router MAC address—Each distributed EVPN gateway has a unique router MAC address used for inter-gateway forwarding. The MAC addresses in the inner Ethernet header of VXLAN packets are router MAC addresses of distributed EVPN gateways.
VSI interfaces
As shown in Figure 8, each distributed EVPN gateway has the following types of VSI interfaces:
· VSI interface as a gateway interface of a VXLAN—The VSI interface acts as the gateway interface for VMs in a VXLAN. The VSI interface is associated with a VSI and a VPN instance. On different distributed EVPN gateways, the VSI interface of a VXLAN uses the same IP address to provide services.
· VSI interface associated with an L3 VXLAN ID—The VSI interface is associated with a VPN instance and assigned an L3 VXLAN ID. VSI interfaces associated with the same VPN instance share an L3 VXLAN ID.
A border gateway only has VSI interfaces that are associated with an L3 VXLAN ID.
Figure 8 Example of distributed EVPN gateway deployment
Layer 3 forwarding entry learning
A distributed EVPN gateway forwards Layer 3 traffic based on FIB entries generated from BGP EVPN routes and ARP information.
A VTEP advertises an external route imported in the EVPN address family through MP-BGP. A remote VTEP adds the route to the FIB table of a VPN instance based on the L3 VXLAN ID carried in the route. In the FIB entry, the outgoing interface is a VXLAN tunnel interface, and the next hop is the peer VTEP address in the NEXT_HOP attribute of the route.
A VTEP has the following types of ARP information:
· Local ARP information—ARP information of VMs in the local site. The VTEP snoops GARP packets, RARP packets, and ARP requests for the gateway MAC address to learn the ARP information of the senders and generates ARP entries and FIB entries. In an ARP or FIB entry, the outgoing interface is the site-facing interface where the packet is received, and the VPN instance is the instance associated with the corresponding VSI interface.
· Remote ARP information—ARP information of VMs in remote sites. Each VTEP uses MP-BGP to advertise its local ARP information with L3 VXLAN IDs in routes to remote sites. A VTEP generates only FIB entries for the remote ARP information. A FIB entry contains the following information:
¡ Outgoing interface: VSI interface associated with the L3 VXLAN ID.
¡ Next hop: Peer VTEP address in the NEXT_HOP attribute of the route.
¡ VPN instance: VPN instance associated with the L3 VXLAN ID.
The VTEP then creates an ARP entry for the next hop in the FIB entry.
Traffic forwarding
A distributed EVPN gateway can work in one of the following modes:
· Switching and routing mode—Forwards Layer 2 traffic based on the MAC address table and forwards Layer 3 traffic based on the FIB table. In this mode, you need to enable ARP flood suppression on the distributed EVPN gateway to reduce flooding.
· Routing mode— Forwards both Layer 2 and Layer 3 traffic based on the FIB table. In this mode, you need to enable local proxy ARP on the distributed EVPN gateway.
For more information about MAC address table-based Layer 2 forwarding, see "Unicast."
Figure 9 shows the intra-site Layer 3 forwarding process.
1. The source VM sends an ARP request to obtain the MAC address of the destination VM.
2. The gateway replies to the source VM with the MAC address of the VSI interface associated with the source VM's VSI.
3. The source VM sends a Layer 3 packet to the gateway.
4. The gateway looks up the FIB table of the VPN instance associated with the source VM's VSI and finds the matching outgoing site-facing interface.
5. The gateway processes the Ethernet header of the Layer 3 packet as follows:
¡ Replaces the destination MAC address with the destination VM's MAC address.
¡ Replaces the source MAC address with the VSI interface's MAC address.
6. The gateway forwards the Layer 3 packet to the destination VM.
Figure 9 Intra-site Layer 3 forwarding
Figure 10 shows the inter-site Layer 3 forwarding process.
1. The source VM sends an ARP request to obtain the MAC address of the destination VM.
2. The gateway replies to the source VM with the MAC address of the VSI interface associated with the source VM's VSI.
3. The source VM sends a Layer 3 packet to the gateway.
4. The gateway looks up the FIB table of the VPN instance associated with the source VM's VSI and finds the matching outgoing VSI interface.
5. The gateway processes the Ethernet header of the Layer 3 packet as follows:
¡ Replaces the destination MAC address with the destination gateway's router MAC address.
¡ Replaces the source MAC address with its own router MAC address.
6. The gateway adds VXLAN encapsulation to the Layer 3 packet and forwards the packet to the destination gateway. The encapsulated VXLAN ID is the L3 VXLAN ID of the corresponding VPN instance.
7. The destination gateway identifies the VPN instance of the packet based on the L3 VXLAN ID and removes the VXLAN encapsulation. Then the gateway forwards the packet based on the matching ARP entry.
Figure 10 Inter-site Layer 3 forwarding
Communication between private and public networks
A distributed EVPN gateway uses the public instance to perform Layer 3 forwarding for the public network and to enable communication between private and public networks. The public instance is similar to a VPN instance. A distributed EVPN gateway processes traffic of the public instance in the same way it does for a VPN instance. For the public instance to work correctly, you must configure an RD, an L3 VXLAN ID, and route targets for it. If a VSI interface is not associated with any VPN instance, the VSI interface belongs to the public instance.
ARP flood suppression
ARP flood suppression reduces ARP request broadcasts by enabling the VTEP to reply to ARP requests on behalf of VMs.
As shown in Figure 11, this feature snoops ARP requests, ARP responses, and BGP EVPN routes to populate the ARP flood suppression table with local and remote MAC addresses. If an ARP request has a matching entry, the VTEP replies to the request on behalf of the VM. If no match is found, the VTEP floods the request to both local and remote sites.
Figure 11 ARP flood suppression
ARP flood suppression uses the following workflow:
1. VM 1 sends an ARP request to obtain the MAC address of VM 7.
2. VTEP 1 creates a suppression entry for VM 1, floods the ARP request in the VXLAN, and sends the suppression entry to VTEP 2 and VTEP 3 through BGP EVPN.
3. VTEP 2 and VTEP 3 de-encapsulate the ARP request and broadcast the request in the local site.
4. VM 7 sends an ARP reply.
5. VTEP 2 creates a suppression entry for VM 7, forwards the ARP reply to VTEP 1, and sends the suppression entry to VTEP 1 and VTEP 3 through BGP EVPN.
6. VTEP 1 de-encapsulates the ARP reply and forwards the ARP reply to VM 1.
7. VM 4 sends an ARP request to obtain the MAC address of VM 1.
8. VTEP 1 creates a suppression entry for VM 4 and replies to the ARP request.
9. VM 10 sends an ARP request to obtain the MAC address of VM 1.
10. VTEP 3 creates a suppression entry for VM 10 and replies to the ARP request.
MAC mobility
MAC mobility refers to the movement of a VM or host from one ES to another. The source VTEP is unaware of the MAC move event. To notify other VTEPs of the change, the destination VTEP advertises a MAC/IP advertisement route for the MAC address. The source VTEP withdraws the old route for the MAC address after receiving the new route. The MAC/IP advertisement route has a sequence number that increases when the MAC address moves. The sequence number identifies the most recent move if the MAC address moves multiple times.
Restrictions and guidelines: VXLAN tunnel assignment
Make sure the following VXLAN tunnels are not associated with the same VXLAN when they have the same tunnel destination IP address:
· A VXLAN tunnel automatically created by EVPN.
· A manually created VXLAN tunnel.
For more information about VXLAN, see VXLAN Configuration Guide.
As a best practice to ensure correct traffic forwarding, configure the same MAC address for all VSI interfaces on an EVPN gateway.
EVPN VXLAN tasks at a glance
To configure EVPN VXLAN, perform the following tasks:
1. Configuring a VXLAN on a VSI
a. Configuring a VXLAN on a VSI
b. (Optional.) Configuring VSI parameters
2. Configuring an EVPN instance
3. Configuring BGP to advertise BGP EVPN routes
a. Enabling BGP to advertise BGP EVPN routes
b. (Optional.) Configuring optimal route selection and route advertisement settings
c. (Optional.) Maintaining BGP sessions
5. Configuring an EVPN gateway
Choose one of the following tasks:
¡ Configuring a centralized EVPN gateway
¡ Configuring a distributed EVPN gateway
6. (Optional.) Managing remote MAC address entries and remote ARP learning
7. (Optional.) Configuring BGP EVPN route redistribution and advertisement
¡ Redistributing MAC/IP advertisement routes into BGP unicast routing tables
¡ Enabling BGP EVPN route advertisement to the local site
8. (Optional.) Maintaining and optimizing an EVPN network
¡ Confining floods to the local site
¡ Enabling ARP flood suppression
¡ Enabling packet statistics for VXLAN tunnels
Configuring a VXLAN on a VSI
Restrictions and guidelines for VXLAN configuration on a VSI
For more information about the VXLAN commands in this task, see VXLAN Command Reference.
Creating a VXLAN on a VSI
1. Enter system view.
system-view
2. Enable L2VPN.
l2vpn enable
By default, L2VPN is disabled.
3. Create a VSI and enter VSI view.
vsi vsi-name
4. Enable the VSI.
undo shutdown
By default, a VSI is enabled.
5. Create a VXLAN and enter VXLAN view.
vxlan vxlan-id
You can create only one VXLAN on a VSI. The VXLAN ID must be unique for each VSI.
Configuring VSI parameters
1. Enter system view.
system-view
2. Enter VSI view.
vsi vsi-name
3. Configure a VSI description.
description text
By default, a VSI does not have a description.
4. Set the MTU for the VSI.
mtu mtu
The default MTU is 1500 bytes for a VSI.
5. Set the broadcast, multicast, or unknown unicast bandwidth restraints for the VSI.
restrain { broadcast | multicast | unknown-unicast } bandwidth
By default, the broadcast, multicast, and unknown unicast bandwidth restraints are 5120 kbps on a VSI.
6. Configure MAC address learning settings:
a. Enable MAC address learning for the VSI.
mac-learning enable
By default, MAC address learning is enabled for a VSI.
b. (Optional.) Set a limit for the VSI's MAC address table.
mac-table limit mac-limit
By default, no limit is set for a VSI's MAC address table.
Configuring an EVPN instance
About this task
You do not need to associate a VPN instance with a VXLAN that requires only Layer 2 connectivity. The BGP EVPN routes advertised by the device carry the RD and route targets configured for the EVPN instance associated with the VXLAN.
Procedure
1. Enter system view.
system-view
2. Enter VSI view.
vsi vsi-name
3. Create an EVPN instance and enter EVPN instance view.
evpn encapsulation vxlan
4. Configure an RD for the EVPN instance.
route-distinguisher { route-distinguisher | auto [ router-id ] }
By default, no RD is configured for an EVPN instance.
5. Configure route targets for the EVPN instance.
vpn-target { vpn-target&<1-8> | auto } [ both | export-extcommunity | import-extcommunity ]
By default, an EVPN instance does not have route targets.
Make sure the following requirements are met:
¡ The import targets of the EVPN instance do not match the export targets of the VPN instance associated with the VXLAN or the public instance.
¡ The export targets of the EVPN instance do not match the import targets of the VPN instance associated with the VXLAN or the public instance.
For more information about VPN instance configuration and public instance configuration, see "Configuring an L3 VXLAN ID for a VSI interface."
Configuring BGP to advertise BGP EVPN routes
Restrictions and guidelines for BGP EVPN route advertisement
For more information about BGP commands in this task, see Layer 3—IP Routing Command Reference.
Enabling BGP to advertise BGP EVPN routes
1. Enter system view.
system-view
2. Configure a global router ID.
router id router-id
By default, no global router ID is configured.
3. Enable a BGP instance and enter BGP instance view.
bgp as-number [ instance instance-name ]
By default, BGP is disabled and no BGP instances exist.
4. Specify remote VTEPs as BGP peers.
peer { group-name | ipv4-address [ mask-length ] } as-number as-number
5. Create the BGP EVPN address family and enter BGP EVPN address family view.
address-family l2vpn evpn
6. Enable BGP to exchange BGP EVPN routes with a peer or peer group.
peer { group-name | ipv4-address [ mask-length ] } enable
By default, BGP does not exchange BGP EVPN routes with peers.
Configuring optimal route selection and route advertisement settings
1. Enter system view.
system-view
2. Enter BGP instance view.
bgp as-number [ instance instance-name ]
3. Enter BGP EVPN address family view.
address-family l2vpn evpn
4. Permit the local AS number to appear in routes from a peer or peer group and set the number of appearances.
peer { group-name | ipv4-address [ mask-length ] } allow-as-loop [ number ]
By default, the local AS number is not allowed in routes from peers.
5. Enable route target filtering for BGP EVPN routes.
policy vpn-target
By default, route target filtering is enabled for BGP EVPN routes.
6. (Optional.) Set the optimal route selection delay timer.
route-select delay delay-value
By default, the optimal route selection delay timer is 0 seconds, which means optimal route selection is not delayed.
7. (Optional.) Set the delay time for responding to recursive next hop changes.
nexthop recursive-lookup [ non-critical-event ] delay [ delay-value ]
By default, BGP responds to recursive next hop changes immediately.
8. Configure BGP route reflection settings:
a. Configure the device as an RR and specify a peer or peer group as its client.
peer { group-name | ipv4-address [ mask-length ] } reflect-client
By default, no RR or client is configured.
b. (Optional.) Enable BGP EVPN route reflection between clients.
reflect between-clients
By default, BGP EVPN route reflection between clients is enabled.
c. (Optional.) Configure the cluster ID of the RR.
reflector cluster-id { cluster-id | ipv4-address }
By default, an RR uses its own router ID as the cluster ID.
d. (Optional.) Create a reflection policy for the RR to filter reflected BGP EVPN routes.
rr-filter { ext-comm-list-number | ext-comm-list-name }
By default, an RR does not filter reflected BGP EVPN routes.
e. (Optional.) Enable the route reflector to change the attributes of routes to be reflected.
reflect change-path-attribute
By default, an RR does not filter reflected BGP EVPN routes.
f. (Optional.) Add a peer or peer group to the nearby cluster.
peer { group-name | ipv4-address [ mask-length ] } reflect-nearby-group
By default, the nearby cluster does not have any peers or peer groups.
The RR does not change the next hop of routes reflected to peers and peer groups in the nearby cluster.
9. Configure the device to not change the next hop of routes advertised to an EBGP peer or peer group.
peer { group-name | ipv4-address [ mask-length ] } next-hop-invariable
By default, the device uses its address as the next hop of routes advertised to EBGP peers.
10. Apply a routing policy to routes received from or advertised to a peer or peer group.
peer { group-name | ipv4-address [ mask-length ] } route-policy route-policy-name { export | import }
By default, no routing policies are applied to routes received from or advertised to peers or peer groups.
11. Advertise the COMMUNITY attribute to a peer or peer group.
peer { group-name | ipv4-address [ mask-length ] } advertise-community
By default, the device does not advertise the COMMUNITY attribute to peers or peer groups.
Maintaining BGP sessions
Perform the following tasks in user view:
· Reset BGP sessions of the BGP EVPN address family.
reset bgp [ instance instance-name ] { as-number | ipv4-address [ mask-length ] | ipv6-address [ prefix-length ] | all | external | group group-name | internal } l2vpn evpn
· Soft-reset BGP sessions of the BGP EVPN address family.
refresh bgp [ instance instance-name ] { ipv4-address [ mask-length ] | ipv6-address [ prefix-length ] | all | external | group group-name | internal } { export | import } l2vpn evpn
Mapping ACs to a VSI
About this task
To assign the customer traffic on a Layer 3 interface to a VXLAN, map the interface to the VXLAN's VSI. The VSI uses its MAC address table to forward the customer traffic.
For more information about the VXLAN commands in this task, see VXLAN Command Reference.
Procedure
1. Enter system view.
system-view
2. Enter Layer 3 interface view.
interface interface-type interface-number
3. Map the Layer 3 interface to a VSI.
xconnect vsi vsi-name [ access-mode { ethernet | vlan } ] [ track track-entry-number&<1-3> ]
By default, a Layer 3 interface is not mapped to any VSI.
Configuring a centralized EVPN gateway
Restrictions and guidelines
If an EVPN network contains a centralized EVPN gateway, you must enable ARP flood suppression on VTEPs. Typically remote ARP learning is disabled in an EVPN network. When ARP requests for the gateway MAC address are sent to the centralized EVPN gateway through VXLAN tunnels, the gateway does not respond to the requests. If ARP flood suppression is disabled on VTEPs, VMs cannot obtain the MAC address of the gateway.
Procedure
1. Enter system view.
system-view
2. Create a VSI interface and enter VSI interface view.
interface vsi-interface vsi-interface-id
For more information about this command, see VXLAN Command Reference.
3. Assign an IPv4 address to the VSI interface.
ip address ip-address { mask | mask-length } [ sub ]
By default, no IPv4 address is assigned to a VSI interface.
4. Return to system view.
quit
5. Enter VSI view.
vsi vsi-name
6. Specify the VSI interface as the gateway interface for the VSI.
gateway vsi-interface vsi-interface-id
By default, no gateway interface is specified for a VSI.
For more information about this command, see VXLAN Command Reference.
Configuring a distributed EVPN gateway
Restrictions and guidelines for distributed EVPN gateway configuration
Make sure a VSI interface uses the same MAC address to provide service on distributed EVPN gateways connected to IPv4 sites.
For a VXLAN to access the external network, specify the VXLAN's VSI interface on the border gateway as the next hop on distributed EVPN gateways by using one of the following methods:
· Configure a static route.
· Configure a routing policy and apply the policy by using the apply default-next-hop or apply next-hop command. For more information about configuring routing policies, see routing policy configuration in Layer 3—IP Routing Configuration Guide.
If both ARP flood suppression and local proxy ARP are enabled on a distributed EVPN gateway, only local proxy ARP takes effect. As a best practice, do not use these features together on distributed EVPN gateways.
On a distributed EVPN gateway, make sure the VSI interfaces configured with L3 VXLAN IDs use the same MAC address. To modify the MAC address of a VSI interface, use the mac-address command.
Configuring a VSI interface
About this task
To save Layer 3 interface resources on a distributed EVPN gateway, multiple VSIs can share one VSI interface. You can assign multiple IP addresses to the VSI interface for the VSIs to use as gateway addresses. On an IPv4 network, you can assign one primary IP address and multiple secondary IP addresses to the gateway interface.
When VSIs share a VSI interface, you must specify the subnet of each VSI for the VSI interface to identify the VSI of a packet. The subnets must be unique.
Procedure
1. Enter system view.
system-view
2. Create a VSI interface and enter VSI interface view.
interface vsi-interface vsi-interface-id
For more information about this command, see VXLAN Command Reference.
3. Assign an IP address to the VSI interface.
ip address ip-address { mask | mask-length } [ sub ]
By default, no IP address is assigned to a VSI interface.
4. (Optional.) Assign a MAC address to the VSI interface.
mac-address mac-address
The default MAC address of a VSI interface is the bridge MAC address.
To ensure correct forwarding after VM migration, you must assign the same MAC address to the VSI interfaces of a VXLAN on all distributed gateways.
5. Specify the VSI interface as a distributed gateway.
distributed-gateway local
By default, a VSI interface is not a distributed gateway.
For more information about this command, see VXLAN Command Reference.
6. (Optional.) Enable local proxy ARP.
local-proxy-arp enable [ ip-range startIP to endIP ]
By default, local proxy ARP is disabled.
For more information about the command, see proxy ARP commands in Layer 3—IP Services Command Reference.
7. Return to system view.
quit
8. Enter VSI view.
vsi vsi-name
9. Specify the VSI interface as the gateway interface for the VSI.
gateway vsi-interface vsi-interface-id
By default, no gateway interface is specified for a VSI.
For more information about this command, see VXLAN Command Reference.
10. Assign a subnet to the VSI.
gateway subnet { ipv4-address wildcard-mask | ipv6-address prefix-length }
By default, no subnet exists on a VSI.
For more information about this command, see VXLAN Command Reference.
Configuring an L3 VXLAN ID for a VSI interface
Restrictions and guidelines for L3 VXLAN ID configuration
The L3 VXLAN ID of a VSI interface cannot be the same as any VXLAN ID specified by using the mapping vni command. For more information about the mapping vni command, see "Configuring EVPN-DCI."
A distributed EVPN gateway uses the following rules to select the router MAC address:
· If a MAC address is manually assigned to a VSI interface configured with an L3 VXLAN ID, the distributed EVPN gateway uses the assigned MAC address as its router MAC address.
· If multiple VSI interfaces with an L3 VXLAN ID are manually assigned MAC addresses, the distributed EVPN gateway uses the MAC address of the lowest-numbered VSI interface as its router MAC address.
· If no VSI interface has an L3 VXLAN ID or a manually assigned MAC address, the distributed EVPN gateway uses its bridge MAC address as the router MAC address.
If the elected router MAC address takes effect on a distributed EVPN gateway, creation of VSI interfaces does not trigger re-election of the router MAC address.
Configuring an L3 VXLAN ID for the VSI interface of a VPN instance
1. Enter system view.
system-view
2. Configure a VPN instance:
a. Create a VPN instance and enter VPN instance view.
ip vpn-instance vpn-instance-name
b. Configure an RD for the VPN instance.
route-distinguisher route-distinguisher
By default, no RD is configured for a VPN instance.
c. Configure route targets for the VPN instance.
vpn-target vpn-target&<1-8> [ both | export-extcommunity | import-extcommunity ]
By default, a VPN instance does not have route targets.
d. (Optional.) Apply an export routing policy to the VPN instance.
export route-policy route-policy
By default, no export routing policy is applied to a VPN instance.
e. (Optional.) Apply an import routing policy to the VPN instance.
import route-policy route-policy
By default, no import routing policy is applied to a VPN instance.
f. (Optional.) Enter VPN instance IPv4 or IPv6 address family view.
address-family { ipv4 | ipv6 }
g. (Optional.) Configure route targets for EVPN.
vpn-target vpn-target&<1-8> [ both | export-extcommunity | import-extcommunity ] evpn
The route targets you configure apply only to BGP EVPN routes. They do not apply to VPNv4 or VPNv6 routes. You can configure different route targets for BGP EVPN routes and VPNv4 and VPNv6 routes.
For more information about this command, see MPLS L3VPN commands in MPLS Command Reference.
h. (Optional.) Return to VPN instance view.
quit
3. Configure EVPN on the VPN instance:
a. Enter VPN instance EVPN view.
address-family evpn
b. Configure route targets for EVPN on the VPN instance.
vpn-target vpn-target&<1-8> [ both | export-extcommunity | import-extcommunity ]
By default, EVPN does not have route targets on a VPN instance.
Make sure the following requirements are met:
- The import targets of EVPN do not match the export targets of the VPN instance.
- The export targets of EVPN do not match the import targets of the VPN instance.
c. (Optional.) Apply an export routing policy to EVPN on the VPN instance.
export route-policy route-policy
By default, no export routing policy is applied to EVPN on a VPN instance.
d. (Optional.) Apply an import routing policy to EVPN on the VPN instance.
import route-policy route-policy
By default, no import routing policy is applied to EVPN on a VPN instance. The VPN instance accepts a route when the route targets of the route match local import route targets.
4. Execute the following commands in sequence to return to system view.
a. quit
b. quit
5. Create a VSI interface and enter VSI interface view.
interface vsi-interface vsi-interface-id
6. Associate the VSI interface with the VPN instance.
ip binding vpn-instance vpn-instance-name
By default, a VSI interface is not associated with a VPN instance. The interface is on the public network.
7. (Optional.) Assign a MAC address to the VSI interface.
mac-address mac-address
The default MAC address of a VSI interface is the bridge MAC address.
8. Configure an L3 VXLAN ID for the VSI interface.
l3-vni vxlan-id
By default, no L3 VXLAN ID is configured for a VSI interface.
A VPN instance can have only one L3 VXLAN ID. If multiple L3 VXLAN IDs are configured for a VPN instance, the VPN instance uses the lowest one. To view the L3 VXLAN ID of a VPN instance, use the display evpn routing-table command.
Configuring an L3 VXLAN ID for the VSI interface of the public instance
1. Enter system view.
system-view
2. Create the public instance and enter its view.
ip public-instance
3. Configure an RD for the public instance.
route-distinguisher route-distinguisher
By default, no RD is configured for the public instance.
4. Configure an L3 VXLAN ID for the public instance.
l3-vni vxlan-id
By default, the public instance does not have an L3 VXLAN ID.
The public instance can have only one L3 VXLAN ID. To modify the L3 VXLAN ID for the public instance, you must first delete the original L3 VXLAN ID.
5. (Optional.) Configure route targets for the public instance.
vpn-target vpn-target&<1-8> [ both | export-extcommunity | import-extcommunity ]
By default, the public instance does not have route targets.
6. Enter IPv4 address family view, IPv6 address family view, or EVPN view.
¡ Enter IPv4 address family view.
address-family ipv4
¡ Enter IPv6 address family view.
address-family ipv6
¡ Enter EVPN view.
address-family evpn
7. Configure route targets for IPv4 VPN, IPv6 VPN, or EVPN.
vpn-target vpn-target&<1-8> [ both | export-extcommunity | import-extcommunity ]
By default, IPv4 VPN, IPv6 VPN, and EVPN do not have route targets on the public instance.
Make sure the following requirements are met:
¡ The import targets of an EVPN instance do not match the export targets of the public instance.
¡ The export targets of an EVPN instance do not match the import targets of the public instance.
8. Execute the following commands in sequence to return to system view.
a. quit
b. quit
9. Create a VSI interface and enter its view.
interface vsi-interface vsi-interface-id
10. Configure an L3 VXLAN ID for the VSI interface.
l3-vni vxlan-id
By default, no L3 VXLAN ID is configured for a VSI interface.
Of the VSI interfaces associated with the public instance, a minimum of one VSI interface must use the same L3 VXLAN ID as the public instance.
Configuring IP prefix route advertisement
About this task
If IGP routes are imported to the BGP-VPN IPv4 or IPv6 unicast address family and the corresponding VPN instance has an L3 VXLAN ID, the device advertises the imported routes as IP prefix advertisement routes.
If IGP routes are imported to the BGP IPv4 or IPv6 unicast address family and the public instance has an L3 VXLAN ID, the device advertises the imported routes as IP prefix advertisement routes.
A VTEP compares the export route targets of received IP prefix advertisement routes with the import route targets configured for IPv4 VPN or IPv6 VPN on a VPN instance or the public instance. If the route targets match, the VTEP accepts the routes and adds the routes to the routing table of the VPN instance or public instance.
Restrictions and guidelines
This feature is supported only by distributed EVPN gateway deployment.
For more information about the BGP commands in this task, see Layer 3—IP Routing Command Reference.
Procedure
1. Enter system view.
system-view
2. Enable a BGP instance and enter BGP instance view.
bgp as-number [ instance instance-name ]
3. Enter BGP address family view.
¡ Enter BGP IPv4 unicast address family view.
address-family ipv4 [ unicast ]
¡ Execute the following commands in sequence to enter BGP-VPN IPv4 unicast address family view.
ip vpn-instance vpn-instance-name
address-family ipv4 [ unicast ]
¡ Enter BGP IPv6 unicast address family view.
address-family ipv6 [ unicast ]
¡ Execute the following commands in sequence to enter BGP-VPN IPv6 unicast address family view.
ip vpn-instance vpn-instance-name
address-family ipv6 [ unicast ]
4. Enable BGP to redistribute routes from an IGP protocol.
import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]
By default, BGP does not redistribute IGP routes.
5. (Optional.) Enable default route redistribution into the BGP routing table.
default-route imported
By default, default route redistribution into the BGP routing table is disabled.
6. (Optional.) Configure ECMP VPN route redistribution:
a. Return to BGP instance view.
quit
b. Enter BGP EVPN address family view.
address-family l2vpn evpn
c. Enable ECMP VPN route redistribution.
vpn-route cross multipath
By default, ECMP VPN route redistribution is disabled. If multiple routes have the same prefix and RD, BGP only imports the optimal route into the EVPN routing table.
ECMP VPN route redistribution enables BGP to import all routes that have the same prefix and RD into the EVPN routing table.
Managing remote MAC address entries and remote ARP learning
Disabling remote MAC address learning and remote ARP or ND learning
About this task
By default, the device learns MAC information, ARP information, and ND information of remote user terminals from packets received on VXLAN tunnel interfaces. The automatically learned remote MAC, ARP, and ND information might conflict with the remote MAC, ARP, and ND information advertised through BGP. As a best practice to avoid the conflicts, disable remote MAC address learning and remote ARP or ND learning on the device.
For more information about the VXLAN commands in this task, see VXLAN Command Reference.
Procedure
1. Enter system view.
system-view
2. Disable remote MAC address learning.
vxlan tunnel mac-learning disable
By default, remote MAC address learning is enabled.
3. Disable remote ARP learning.
vxlan tunnel arp-learning disable
By default, remote ARP learning is enabled.
4. Disable remote ND learning.
vxlan tunnel nd-learning disable
By default, remote ND learning is enabled.
Disabling MAC address advertisement
About this task
The MAC information and ARP or ND information advertised by the VTEP overlap. To avoid duplication, disable MAC address advertisement and withdraw the MAC addresses advertised to remote VTEPs.
Procedure
1. Enter system view.
system-view
2. Enter VSI view.
vsi vsi-name
3. Enter EVPN instance view.
evpn encapsulation vxlan
4. Disable MAC address advertisement and withdraw advertised MAC addresses.
mac-advertising disable
By default, MAC address advertisement is enabled.
Enabling MAC mobility event suppression
About this task
On an EVPN VXLAN network, misconfiguration of MAC addresses might cause two sites to contain the same MAC address. In this condition, VTEPs at the two sites constantly synchronize and update EVPN MAC entries and determine that MAC mobility events occur. As a result, an inter-site loop might occur, and the bandwidth is occupied by MAC entry synchronization traffic. To eliminate loops and suppress those MAC mobility events, enable MAC mobility event suppression on the VTEPs.
The MAC mobility event suppression feature allows a MAC address to move at most the specified number of times (MAC mobility suppression threshold) out of a site within a MAC mobility detection cycle. If the suppression threshold has been reached for a MAC address within a detection cycle, the VTEP at the site suppresses the subsequent move after the MAC address moves back to the site. In addition, the VTEP learns the MAC address but does not advertise it.
Restrictions and guidelines
After you execute the undo evpn route mac-mobility suppression command or when the MAC mobility suppression time expires, a VTEP acts as follows:
· Advertises MAC address entries immediately for the suppressed MAC address entries that have not aged out.
· Relearns the MAC addresses for the suppressed MAC address entries that have aged out and advertises the MAC address entries.
If both MAC address entry conflicts and ARP entry conflicts exist for a MAC address, you must enable both MAC mobility event suppression and ARP mobility event suppression. If you enable only MAC mobility event suppression, the system cannot suppress MAC mobility events for the MAC address.
Procedure
1. Enter system view.
system-view
2. Enable MAC mobility event suppression.
evpn route mac-mobility suppression [ detect-cycle detect-time | detect-threshold move-times | suppression-time [ suppression-time | permanent ] ] *
By default, MAC mobility event suppression is disabled.
Disabling learning of MAC addresses from ARP or ND information
About this task
The MAC information and ARP or ND information advertised by a remote VTEP overlap. To avoid duplication, disable the learning of MAC addresses from ARP or ND information. EVPN will learn remote MAC addresses only from the MAC information advertised from remote sites.
Procedure
1. Enter system view.
system-view
2. Enter VSI view.
vsi vsi-name
3. Enter EVPN instance view.
evpn encapsulation vxlan
4. Disable the EVPN instance from learning MAC addresses from ARP information.
arp mac-learning disable
By default, an EVPN instance learns MAC addresses from ARP information.
5. Disable the EVPN instance from learning MAC addresses from ND information.
nd mac-learning disable
By default, an EVPN instance learns MAC addresses from ND information.
Disabling ARP information advertisement
About this task
In an EVPN network with distributed gateways, you can disable ARP information advertisement for a VXLAN to save resources if all its user terminals use the same EVPN gateway device. The EVPN instance of the VXLAN will stop advertising ARP information through MAC/IP advertisement routes and withdraw advertised ARP information. When ARP information advertisement is disabled, user terminals in other VXLANs still can communicate with that VXLAN through IP prefix advertisement routes.
Procedure
1. Enter system view.
system-view
2. Enter VSI view.
vsi vsi-name
3. Enter EVPN instance view.
evpn encapsulation vxlan
4. Disable ARP information advertisement for the EVPN instance.
arp-advertising disable
By default, ARP information advertisement is enabled for an EVPN instance.
Enabling ARP mobility event suppression
About this task
On an EVPN VXLAN network, misconfiguration of IP addresses might cause two sites to contain the same IP address. In this condition, VTEPs at the two sites constantly synchronize and update EVPN ARP entries and determine that ARP mobility events occur. As a result, an inter-site loop might occur, and the bandwidth is occupied by ARP entry synchronization traffic. To eliminate loops and suppress those ARP mobility events, enable ARP mobility event suppression on the VTEPs.
The ARP mobility event suppression feature allows an IP address to move at most the specified number of times (ARP mobility suppression threshold) out of a site within an ARP mobility detection cycle. If the suppression threshold has been reached for an IP address within a detection cycle, the VTEP at the site suppresses the subsequent move after the IP address moves back to the site. In addition, the VTEP learns ARP information for the IP address but does not advertise the ARP information.
Restrictions and guidelines
After you execute the undo evpn route arp-mobility suppression command or when the ARP mobility suppression time expires, a VTEP acts as follows:
· Advertises ARP information immediately for the suppressed ARP entries that have not aged out.
· Relearns ARP information for the suppressed ARP entries that have aged out and advertises the ARP information.
ARP mobility event suppression takes effect only on the following EVPN VXLAN networks:
· EVPN VXLAN network enabled with ARP flood suppression.
· EVPN VXLAN network configured with distributed VXLAN IP gateways.
If both MAC address entry conflicts and ARP entry conflicts exist for a MAC address, you must enable both MAC mobility event suppression and ARP mobility event suppression. If you enable only MAC mobility event suppression, the system cannot suppress MAC mobility events for the MAC address.
Procedure
1. Enter system view.
system-view
2. Enable ARP mobility event suppression.
evpn route arp-mobility suppression [ detect-cycle detect-time | detect-threshold move-times | suppression-time [ suppression-time | permanent ] ] *
By default, ARP mobility event suppression is disabled.
Configuring BGP EVPN route redistribution and advertisement
Redistributing MAC/IP advertisement routes into BGP unicast routing tables
About this task
This task enables the device to redistribute received MAC/IP advertisement routes that contain ARP or ND information into a BGP unicast routing table.
· If you perform this task for the BGP IPv4 or IPv6 unicast address family, the device will redistribute the routes into the BGP IPv4 or IPv6 unicast routing table. In addition, the device will advertise the routes to the local site.
· If you perform this task for the BGP-VPN IPv4 or IPv6 unicast address family, the device will redistribute the routes into the BGP-VPN IPv4 or IPv6 unicast routing table of the corresponding VPN instance. To advertise the routes to the local site, you must configure the advertise l2vpn evpn command.
Procedure (BGP instance view)
1. Enter system view.
system-view
2. Enter BGP instance view.
bgp as-number [ instance instance-name ]
3. Enter BGP IPv4 or IPv6 unicast address family view.
address-family { ipv4 | ipv6 }
4. Redistribute MAC/IP advertisement routes that contain ARP or ND information into the BGP IPv4 or IPv6 unicast routing table.
import evpn mac-ip
By default, MAC/IP advertisement routes that contain ARP or ND information are not redistributed into the BGP IPv4 or IPv6 unicast routing table.
Procedure (BGP-VPN instance view)
1. Enter system view.
system-view
2. Enter BGP instance view.
bgp as-number [ instance instance-name ]
3. Enter BGP-VPN instance view.
ip vpn-instance vpn-instance-name
4. Enter BGP-VPN IPv4 or IPv6 unicast address family view.
address-family { ipv4 | ipv6 }
5. Redistribute MAC/IP advertisement routes that contain ARP or ND information into the BGP-VPN IPv4 or IPv6 unicast routing table.
import evpn mac-ip
By default, MAC/IP advertisement routes that contain ARP or ND information are not redistributed into the BGP-VPN IPv4 or IPv6 unicast routing table.
Enabling BGP EVPN route advertisement to the local site
About this task
This feature enables the device to advertise private BGP EVPN routes to the local site after the device adds the routes to the routing table of a VPN instance.
Procedure (IPv4)
1. Enter system view.
system-view
2. Enter BGP instance view.
bgp as-number [ instance instance-name ]
3. Enter BGP-VPN instance view.
ip vpn-instance vpn-instance-name
4. Enter BGP-VPN IPv4 unicast address family view.
address-family ipv4 [ unicast ]
5. Enable BGP EVPN route advertisement to the local site.
advertise l2vpn evpn
By default, BGP EVPN route advertisement to the local site is enabled.
Procedure (IPv6)
1. Enter system view.
system-view
2. Enter BGP instance view.
bgp as-number [ instance instance-name ]
3. Enter BGP-VPN instance view.
ip vpn-instance vpn-instance-name
4. Enter BGP-VPN IPv6 unicast address family view.
address-family ipv6 [ unicast ]
5. Enable BGP EVPN route advertisement to the local site.
advertise l2vpn evpn
By default, BGP EVPN route advertisement to the local site is enabled.
Confining floods to the local site
About this task
By default, the VTEP floods broadcast, unknown unicast, and unknown multicast frames received from the local site to the following interfaces in the frame's VXLAN:
· All site-facing interfaces except for the incoming interface.
· All VXLAN tunnel interfaces.
To confine a kind of flood traffic to the site-facing interfaces, disable flooding for that kind of flood traffic on the VSI bound to the VXLAN. The VSI will not flood the corresponding frames to VXLAN tunnel interfaces.
For more information about the VXLAN commands in this task, see VXLAN Command Reference.
Procedure
1. Enter system view.
system-view
2. Enter VSI view.
vsi vsi-name
3. Disable flooding for the VSI.
flooding disable all
By default, flooding is enabled for a VSI.
Enabling ARP flood suppression
About this task
Use ARP flood suppression to reduce ARP request broadcasts.
The aging timer is fixed at 25 minutes for ARP flood suppression entries. If the flooding disable command is configured, set the MAC aging timer to a higher value than the aging timer for ARP flood suppression entries on all VTEPs. This setting prevents the traffic blackhole that occurs when a MAC address entry ages out before its ARP flood suppression entry ages out. To set the MAC aging timer, use the mac-address timer command.
When remote ARP learning is disabled for VXLANs, the device does not use ARP flood suppression entries to respond to ARP requests received on VXLAN tunnels.
Procedure
1. Enter system view.
system-view
2. Enter VSI view.
vsi vsi-name
3. Enable ARP flood suppression.
arp suppression enable
By default, ARP flood suppression is disabled.
For more information about this command, see VXLAN Command Reference.
Enabling packet statistics for VXLAN tunnels
About this task
Perform this task to enable packet statistics globally for automatically created VXLAN tunnels or VXLAN tunnels associated with L3 VXLAN IDs.
If you enable packet statistics for automatically created VXLAN tunnels, follow these guidelines:
· To display the packet statistics for VXLAN tunnels, use the display interface tunnel command in any view.
· To clear the packet statistics for VXLAN tunnels, use the reset counters interface tunnel command in user view.
If you enable packet statistics for VXLAN tunnels associated with L3 VXLAN IDs, follow these guidelines:
· To display the packet statistics for VXLAN tunnels, use the display vxlan tunnel command in any view.
· To clear the packet statistics for VXLAN tunnels, use the reset l2vpn statistics tunnel command in user view.
Procedure
1. Enter system view.
system-view
2. Enable packet statistics for VXLAN tunnels.
tunnel statistics vxlan { auto | l3-vni }
By default, the packet statistics feature is disabled for VXLAN tunnels.
For more information about this command, see VXLAN Command Reference.
Display and maintenance commands for EVPN VXLAN
Execute display commands in any view and reset commands in user view.
Task |
Command |
Display BGP peer group information. |
display bgp [ instance instance-name ] group l2vpn evpn [ group-name group-name ] |
Display BGP EVPN routes. |
display bgp [ instance instance-name ] l2vpn evpn [ peer { ipv4-address | ipv6-address } { advertised-routes | received-routes } [ statistics ] | [ route-distinguisher route-distinguisher | route-type { auto-discovery | es | imet | ip-prefix | mac-ip } ] [ { evpn-route route-length | evpn-prefix } [ advertise-info ] | ipv4-address | ipv6-address | mac-address ] | statistics ] |
Display BGP peer or peer group information. |
display bgp [ instance instance-name ] peer l2vpn evpn [ ipv4-address mask-length | ipv6-address prefix-length | { ipv4-address | ipv6-address | group-name group-name } log-info | [ ipv4-address ipv6-address ] verbose ] |
Display information about BGP update groups. |
display bgp [ instance instance-name ] update-group l2vpn evpn [ ipv4-address | ipv6-address ] |
Display information about peers that are automatically discovered through BGP. |
display evpn auto-discovery { { imet | mac-ip } [ mpls | vxlan ] [ peer ip-address] [ vsi vsi-name ] | macip-prefix [ nexthop next-hop ] [ count ] } |
Display EVPN ARP entries. |
display evpn route arp [ local | remote ] [ public-instance | vpn-instance vpn-instance-name ] [ count ] |
Display ARP flood suppression entries. |
display evpn route arp suppression [ mpls | vxlan ] [ local | remote ] [ vsi vsi-name ] [ count ] |
Display EVPN ARP mobility information. |
display evpn route arp-mobility [ public-instance | vpn-instance vpn-instance-name ] [ ip ip-address ] |
Display EVPN MAC address entries. |
display evpn route mac [ mpls | vxlan ] [ local | remote ] [ vsi vsi-name ] [ count ] |
Display EVPN MAC mobility information. |
display evpn route mac-mobility [ vsi vsi-name ] [ mac-address mac-address ] |
Display EVPN ND entries. |
display evpn route nd [ local | remote ] [ public-instance | vpn-instance vpn-instance-name ] [ count ] |
Display the routing table for a VPN instance. |
display evpn routing-table [ ipv6 ] { public-instance | vpn-instance vpn-instance-name } [ count |
Display site-facing interfaces excluded from traffic forwarding by split horizon. |
display l2vpn forwarding evpn split-horizon { ac interface interface-type interface-number | ac interface interface-type interface-number service-instance instance-id | tunnel tunnel-number } chassis chassis-number slot slot-number [ cpu cpu-number ] |
Advertise ARP information for suppressed IP addresses for one time. |
reset evpn route arp-mobility suppression [ public-instance | vpn-instance vpn-instance-name [ ip ip-address ] ] |
Advertise suppressed MAC addresses for one time. |
reset evpn route mac-mobility suppression [ vsi vsi-name [ mac mac-address ] ] |
|
NOTE: For more information about the display bgp group, display bgp peer, and display bgp update-group commands, see BGP commands in Layer 3—IP Routing Command Reference. |
EVPN VXLAN configuration examples
Example: EVPN VXLAN Layer 2 forwarding
Network configuration
As shown in Figure 12, configure VXLAN 10 on Router A, Router B, and Router C to provide Layer 2 connectivity for the VMs in the VXLAN across the network sites.
Procedure
1. Configure IP addresses and unicast routing settings:
# Assign IP addresses to interfaces, as shown in Figure 12. (Details not shown.)
# Configure OSPF on all transport network routers (Routers A through D) for them to reach one another. (Details not shown.)
2. Configure Router A:
# Enable L2VPN.
<RouterA> system-view
[RouterA] l2vpn enable
# Disable remote MAC address learning.
[RouterA] vxlan tunnel mac-learning disable
# Create an EVPN instance on VSI vpna, and configure the switch to automatically generate an RD and a route target for the EVPN instance.
[RouterA] vsi vpna
[RouterA-vsi-vpna] evpn encapsulation vxlan
[RouterA-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterA-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterA-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterA-vsi-vpna] vxlan 10
[RouterA-vsi-vpna-vxlan-10] quit
[RouterA-vsi-vpna] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterA] bgp 200
[RouterA-bgp-default] peer 4.4.4.4 as-number 200
[RouterA-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterA-bgp-default] address-family l2vpn evpn
[RouterA-bgp-default-evpn] peer 4.4.4.4 enable
[RouterA-bgp-default-evpn] quit
[RouterA-bgp-default] quit
# Map GigabitEthernet1/2/0/1 to VSI vpna.
[RouterA] interface gigabitethernet 1/2/0/1
[RouterA-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterA-GigabitEthernet1/2/0/1] quit
3. Configure Router B:
# Enable L2VPN.
<RouterB> system-view
[RouterB] l2vpn enable
# Disable remote MAC address learning.
[RouterB] vxlan tunnel mac-learning disable
# Create an EVPN instance on VSI vpna, and configure the switch to automatically generate an RD and a route target for the EVPN instance.
[RouterB] vsi vpna
[RouterB-vsi-vpna] evpn encapsulation vxlan
[RouterB-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterB-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterB-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterB-vsi-vpna] vxlan 10
[RouterB-vsi-vpna-vxlan-10] quit
[RouterB-vsi-vpna] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterB] bgp 200
[RouterB-bgp-default] peer 4.4.4.4 as-number 200
[RouterB-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterB-bgp-default] address-family l2vpn evpn
[RouterB-bgp-default-evpn] peer 4.4.4.4 enable
[RouterB-bgp-default-evpn] quit
[RouterB-bgp-default] quit
# Map GigabitEthernet1/2/0/1 to VSI vpna.
[RouterB] interface gigabitethernet 1/2/0/1
[RouterB-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterB-GigabitEthernet1/2/0/1] quit
4. Configure Router C:
# Enable L2VPN.
<RouterC> system-view
[RouterC] l2vpn enable
# Disable remote MAC address learning.
[RouterC] vxlan tunnel mac-learning disable
# Create an EVPN instance on VSI vpna, and configure the switch to automatically generate an RD and a route target for the EVPN instance.
[RouterC] vsi vpna
[RouterC-vsi-vpna] evpn encapsulation vxlan
[RouterC-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterC-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterC-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterC-vsi-vpna] vxlan 10
[RouterC-vsi-vpna-vxlan-10] quit
[RouterC-vsi-vpna] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterC] bgp 200
[RouterC-bgp-default] peer 4.4.4.4 as-number 200
[RouterC-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterC-bgp-default] address-family l2vpn evpn
[RouterC-bgp-default-evpn] peer 4.4.4.4 enable
[RouterC-bgp-default-evpn] quit
[RouterC-bgp-default] quit
# Map GigabitEthernet1/2/0/1 to VSI vpna.
[RouterC] interface gigabitethernet 1/2/0/1
[RouterC-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterC-GigabitEthernet1/2/0/1] quit
5. Configure Router D:
# Establish BGP connections with other transport network routers.
<RouterD> system-view
[RouterD] bgp 200
[RouterD-bgp-default] group evpn
[RouterD-bgp-default] peer 1.1.1.1 group evpn
[RouterD-bgp-default] peer 2.2.2.2 group evpn
[RouterD-bgp-default] peer 3.3.3.3 group evpn
[RouterD-bgp-default] peer evpn as-number 200
[RouterD-bgp-default] peer evpn connect-interface loopback 0
# Configure BGP to advertise BGP EVPN routes, and disable route target filtering for BGP EVPN routes.
[RouterD-bgp-default] address-family l2vpn evpn
[RouterD-bgp-default-evpn] peer evpn enable
[RouterD-bgp-default-evpn] undo policy vpn-target
# Configure Router D as an RR.
[RouterD-bgp-default-evpn] peer evpn reflect-client
[RouterD-bgp-default-evpn] quit
[RouterD-bgp-default] quit
Verifying the configuration
1. Verify EVPN VXLAN configuration on Router A:
# Verify that Router A has advertised MAC/IP advertisement routes and IMET routes and received MAC/IP advertisement routes and IMET routes from Router B and Router C.
[RouterA] display bgp l2vpn evpn
BGP local router ID is 1.1.1.1
Status codes: * - valid, > - best, d - dampened, h - history
s - suppressed, S - stale, i - internal, e - external
a - additional-path
Origin: i - IGP, e - EGP, ? - incomplete
Total number of routes from all PEs: 4
Route distinguisher: 1:10
Total number of routes: 6
Network NextHop MED LocPrf PrefVal Path/Ogn
* > [2][0][48][0001-0001-0001][0][0.0.0.0]/104
0.0.0.0 0 100 32768 i
* >i [2][0][48][0002-0002-0002][0][0.0.0.0]/104
2.2.2.2 0 100 0 i
* >i [2][0][48][0003-0003-0003][0][0.0.0.0]/104
3.3.3.3 0 100 0 i
* > [3][0][32][1.1.1.1]/80
0.0.0.0 0 100 32768 i
* >i [3][0][32][2.2.2.2]/80
2.2.2.2 0 100 0 i
* >i [3][0][32][3.3.3.3]/80
3.3.3.3 0 100 0 i
# Verify that the VXLAN tunnel interfaces are up on Router A.
[RouterA] display interface tunnel 0
Tunnel0
Current state: UP
Line protocol state: UP
Description: Tunnel0 Interface
Bandwidth: 64 kbps
Maximum transmission unit: 1464
Internet protocol processing: Disabled
Output queue - Urgent queuing: Size/Length/Discards 0/100/0
Output queue - Protocol queuing: Size/Length/Discards 0/500/0
Output queue - FIFO queuing: Size/Length/Discards 0/75/0
Last clearing of counters: Never
Tunnel source 1.1.1.1, destination 2.2.2.2
Tunnel protocol/transport UDP_VXLAN/IP
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 0 packets, 0 bytes, 0 drops
Output: 0 packets, 0 bytes, 0 drops
# Verify that the VXLAN tunnels have been assigned to VXLAN 10.
[RouterA] display l2vpn vsi verbose
VSI Name: vpna
VSI Index : 0
VSI State : Up
MTU : 1500
Diffserv Mode : -
Bandwidth : -
Broadcast Restrain : 5120 kbps
Multicast Restrain : 5120 kbps
Unknown Unicast Restrain: 5120 kbps
MAC Learning : Enabled
MAC Table Limit : -
MAC Learning rate : Unlimited
Local MAC aging time : 300 sec
Remote MAC aging time : 300 sec
Drop Unknown : Disabled
PW Redundancy Mode : Slave
Flooding : Enabled
Statistics : Disabled
VXLAN ID : 10
Tunnels:
Tunnel Name Link ID State Type Flood Proxy
Tunnel0 0x5000000 UP Auto Disabled
Tunnel1 0x5000001 UP Auto Disabled
ACs:
AC Link ID State
GE1/0/1 0 Up
Statistics: Disabled
# Verify that Router A has created EVPN ARP entries for the VMs.
<RouterA> display l2vpn mac-address
MAC Address State VSI Name Link ID/Name Aging
0002-0002-0002 EVPN vpna Tunnel0 NotAging
0003-0003-0003 EVPN vpna Tunnel1 NotAging
0001-0001-0001 Dynamic vpna GE1/0/1 Aging
--- 3 mac address(es) found ---
2. Verify that VM 1, VM 2, and VM 3 can communicate with one another. (Details not shown.)
Example: Configuring a centralized IPv4 EVPN gateway
Network configuration
As shown in Figure 13:
· Configure VXLAN 10 and VXLAN 20 on Router A, Router B, and Router C to provide connectivity for the VMs in the VXLANs across the network sites.
· Configure Router C as a centralized EVPN gateway to provide gateway services and access to the connected Layer 3 network.
· Configure Router D as an RR to reflect BGP EVPN routes between Router A, Router B, and Router C.
Procedure
1. On VM 1 and VM 3, specify 10.1.1.1 as the gateway address. On VM 2 and VM 4, specify 10.1.2.1 as the gateway address. (Details not shown.)
2. Configure IP addresses and unicast routing settings:
# Assign IP addresses to interfaces, as shown in Figure 13. (Details not shown.)
# Configure OSPF on all transport network routers (Routers A through D) for them to reach one another. (Details not shown.)
3. Configure Router A:
# Enable L2VPN.
<RouterA> system-view
[RouterA] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterA] vxlan tunnel mac-learning disable
[RouterA] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterA] vsi vpna
[RouterA-vsi-vpna] arp suppression enable
[RouterA-vsi-vpna] evpn encapsulation vxlan
[RouterA-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterA-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterA-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterA-vsi-vpna] vxlan 10
[RouterA-vsi-vpna-vxlan-10] quit
[RouterA-vsi-vpna] quit
# Create an EVPN instance on VSI vpnb, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterA] vsi vpnb
[RouterA-vsi-vpnb] arp suppression enable
[RouterA-vsi-vpnb] evpn encapsulation vxlan
[RouterA-vsi-vpnb-evpn-vxlan] route-distinguisher auto
[RouterA-vsi-vpnb-evpn-vxlan] vpn-target auto
[RouterA-vsi-vpnb-evpn-vxlan] quit
# Create VXLAN 20.
[RouterA-vsi-vpnb] vxlan 20
[RouterA-vsi-vpnb-vxlan-20] quit
[RouterA-vsi-vpnb] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterA] bgp 200
[RouterA-bgp-default] peer 4.4.4.4 as-number 200
[RouterA-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterA-bgp-default] address-family l2vpn evpn
[RouterA-bgp-default-evpn] peer 4.4.4.4 enable
[RouterA-bgp-default-evpn] quit
[RouterA-bgp-default] quit
# Map GigabitEthernet 1/2/0/1 to VSI vpna.
[RouterA] interface gigabitethernet 1/2/0/1
[RouterA-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterA-GigabitEthernet1/2/0/1] quit
# Map GigabitEthernet 1/2/0/2 to VSI vpnb.
[RouterA] interface gigabitethernet 1/2/0/2
[RouterA-GigabitEthernet1/2/0/2] xconnect vsi vpnb
[RouterA-GigabitEthernet1/2/0/2] quit
4. Configure Router B:
# Enable L2VPN.
<RouterB> system-view
[RouterB] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterB] vxlan tunnel mac-learning disable
[RouterB] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterB] vsi vpna
[RouterB-vsi-vpna] arp suppression enable
[RouterB-vsi-vpna] evpn encapsulation vxlan
[RouterB-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterB-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterB-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterB-vsi-vpna] vxlan 10
[RouterB-vsi-vpna-vxlan-10] quit
[RouterB-vsi-vpna] quit
# Create an EVPN instance on VSI vpnb, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterB] vsi vpnb
[RouterB-vsi-vpnb] arp suppression enable
[RouterB-vsi-vpnb] evpn encapsulation vxlan
[RouterB-vsi-vpnb-evpn-vxlan] route-distinguisher auto
[RouterB-vsi-vpnb-evpn-vxlan] vpn-target auto
[RouterB-vsi-vpnb-evpn-vxlan] quit
# Create VXLAN 20.
[RouterB-vsi-vpnb] vxlan 20
[RouterB-vsi-vpnb-vxlan-20] quit
[RouterB-vsi-vpnb] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterB] bgp 200
[RouterB-bgp-default] peer 4.4.4.4 as-number 200
[RouterB-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterB-bgp-default] address-family l2vpn evpn
[RouterB-bgp-default-evpn] peer 4.4.4.4 enable
[RouterB-bgp-default-evpn] quit
[RouterB-bgp-default] quit
# Map GigabitEthernet 1/2/0/1 to VSI vpna.
[RouterB] interface gigabitethernet 1/2/0/1
[RouterB-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterB-GigabitEthernet1/2/0/1] quit
# Map GigabitEthernet 1/2/0/2 to VSI vpnb.
[RouterB] interface gigabitethernet 1/2/0/2
[RouterB-GigabitEthernet1/2/0/2] xconnect vsi vpnb
[RouterB-GigabitEthernet1/2/0/2] quit
5. Configure Router C:
# Enable L2VPN.
<RouterC> system-view
[RouterC] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterC] vxlan tunnel mac-learning disable
[RouterC] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterC] vsi vpna
[RouterC-vsi-vpna] evpn encapsulation vxlan
[RouterC-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterC-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterC-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterC-vsi-vpna] vxlan 10
[RouterC-vsi-vpna-vxlan-10] quit
[RouterC-vsi-vpna] quit
# Create an EVPN instance on VSI vpnb, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterC] vsi vpnb
[RouterC-vsi-vpnb] evpn encapsulation vxlan
[RouterC-vsi-vpnb-evpn-vxlan] route-distinguisher auto
[RouterC-vsi-vpnb-evpn-vxlan] vpn-target auto
[RouterC-vsi-vpnb-evpn-vxlan] quit
# Create VXLAN 20.
[RouterC-vsi-vpnb] vxlan 20
[RouterC-vsi-vpnb-vxlan-20] quit
[RouterC-vsi-vpnb] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterC] bgp 200
[RouterC-bgp-default] peer 4.4.4.4 as-number 200
[RouterC-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterC-bgp-default] address-family l2vpn evpn
[RouterC-bgp-default-evpn] peer 4.4.4.4 enable
[RouterC-bgp-default-evpn] quit
[RouterC-bgp-default] quit
# Create VSI-interface 1 and assign the interface an IP address. The IP address will be used as the gateway address for VXLAN 10.
[RouterC] interface vsi-interface 1
[RouterC-Vsi-interface1] ip address 10.1.1.1 255.255.255.0
[RouterC-Vsi-interface1] quit
# Specify VSI-interface 1 as the gateway interface for VSI vpna.
[RouterC] vsi vpna
[RouterC-vsi-vpna] gateway vsi-interface 1
[RouterC-vsi-vpna] quit
# Create VSI-interface 2 and assign the interface an IP address. The IP address will be used as the gateway address for VXLAN 20.
[RouterC] interface vsi-interface 2
[RouterC-Vsi-interface2] ip address 10.1.2.1 255.255.255.0
[RouterC-Vsi-interface2] quit
# Specify VSI-interface 2 as the gateway interface for VSI vpnb.
[RouterC] vsi vpnb
[RouterC-vsi-vpnb] gateway vsi-interface 2
[RouterC-vsi-vpnb] quit
6. Configure Router D:
# Establish BGP connections with other transport network routers.
<RouterD> system-view
[RouterD] bgp 200
[RouterD-bgp-default] group evpn
[RouterD-bgp-default] peer 1.1.1.1 group evpn
[RouterD-bgp-default] peer 2.2.2.2 group evpn
[RouterD-bgp-default] peer 3.3.3.3 group evpn
[RouterD-bgp-default] peer evpn as-number 200
[RouterD-bgp-default] peer evpn connect-interface loopback 0
# Configure BGP to advertise BGP EVPN routes, and disable route target filtering for BGP EVPN routes.
[RouterD-bgp-default] address-family l2vpn evpn
[RouterD-bgp-default-evpn] peer evpn enable
[RouterD-bgp-default-evpn] undo policy vpn-target
# Configure Router D as an RR.
[RouterD-bgp-default-evpn] peer evpn reflect-client
[RouterD-bgp-default-evpn] quit
[RouterD-bgp-default] quit
Verifying the configuration
1. Verify the EVPN gateway settings on Router C:
# Verify that Router C has advertised MAC/IP advertisement routes and IMET routes for the gateways and received MAC/IP advertisement routes and IMET routes from Router A and Router B.
[RouterC] display bgp l2vpn evpn
BGP local router ID is 3.3.3.3
Status codes: * - valid, > - best, d - dampened, h - history
s - suppressed, S - stale, i - internal, e - external
a - additional-path
Origin: i - IGP, e - EGP, ? - incomplete
Total number of routes from all PEs: 10
Route distinguisher: 1:10
Total number of routes: 7
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [2][0][48][0000-1234-0001][32][10.1.1.10]/136
1.1.1.1 0 100 0 i
* >i [2][0][48][0000-1234-0003][0][0.0.0.0]/104
2.2.2.2 0 100 0 i
* >i [2][0][48][0000-1234-0003][32][10.1.1.20]/136
2.2.2.2 0 100 0 i
* > [2][0][48][0003-0003-0003][32][10.1.1.1]/136
0.0.0.0 0 100 32768 i
* >i [3][0][32][1.1.1.1]/80
1.1.1.1 0 100 0 i
* >i [3][0][32][2.2.2.2]/80
2.2.2.2 0 100 0 i
* > [3][0][32][3.3.3.3]/80
0.0.0.0 0 100 32768 i
Route distinguisher: 1:20
Total number of routes: 7
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [2][0][48][0000-1234-0002][32][10.1.2.10]/136
1.1.1.1 0 100 0 i
* >i [2][0][48][0000-1234-0004][0][0.0.0.0]/104
2.2.2.2 0 100 0 i
* >i [2][0][48][0000-1234-0004][32][10.1.2.20]/136
2.2.2.2 0 100 0 i
* > [2][0][48][0005-0005-0005][32][10.1.2.1]/136
0.0.0.0 0 100 32768 i
* >i [3][0][32][1.1.1.1]/80
1.1.1.1 0 100 0 i
* >i [3][0][32][2.2.2.2]/80
2.2.2.2 0 100 0 i
* > [3][0][32][3.3.3.3]/80
0.0.0.0 0 100 32768 i
# Verify that the VXLAN tunnel interfaces are up on Router C.
[RouterC] display interface tunnel
Tunnel0
Current state: UP
Line protocol state: UP
Description: Tunnel0 Interface
Bandwidth: 64 kbps
Maximum transmission unit: 1464
Internet protocol processing: Disabled
Output queue - Urgent queuing: Size/Length/Discards 0/100/0
Output queue - Protocol queuing: Size/Length/Discards 0/500/0
Output queue - FIFO queuing: Size/Length/Discards 0/75/0
Last clearing of counters: Never
Tunnel source 3.3.3.3, destination 2.2.2.2
Tunnel protocol/transport UDP_VXLAN/IP
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 0 packets, 0 bytes, 0 drops
Output: 0 packets, 0 bytes, 0 drops
Tunnel1
Current state: UP
Line protocol state: UP
Description: Tunnel1 Interface
Bandwidth: 64 kbps
Maximum transmission unit: 1464
Internet protocol processing: Disabled
Output queue - Urgent queuing: Size/Length/Discards 0/100/0
Output queue - Protocol queuing: Size/Length/Discards 0/500/0
Output queue - FIFO queuing: Size/Length/Discards 0/75/0
Last clearing of counters: Never
Tunnel source 3.3.3.3, destination 1.1.1.1
Tunnel protocol/transport UDP_VXLAN/IP
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 277 packets, 20306 bytes, 0 drops
Output: 1099 packets, 0 bytes, 0 drops
# Verify that the VSI interfaces are up on Router C.
[RouterC] display interface vsi-interface
Vsi-interface1
Current state: UP
Line protocol state: UP
Description: Vsi-interface1 Interface
Bandwidth: 1000000 kbps
Maximum transmission unit: 1500
Internet address: 10.1.1.1/24 (primary)
IP packet frame type: Ethernet II, hardware address: 0003-0003-0003
IPv6 packet frame type: Ethernet II, hardware address: 0003-0003-0003
Physical: Unknown, baudrate: 1000000 kbps
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 0 packets, 0 bytes, 0 drops
Output: 0 packets, 0 bytes, 0 drops
Vsi-interface2
Current state: UP
Line protocol state: UP
Description: Vsi-interface2 Interface
Bandwidth: 1000000 kbps
Maximum transmission unit: 1500
Internet address: 10.1.2.1/24 (primary)
IP packet frame type: Ethernet II, hardware address: 0003-0003-0003
IPv6 packet frame type: Ethernet II, hardware address: 0003-0003-0003
Physical: Unknown, baudrate: 1000000 kbps
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 0 packets, 0 bytes, 0 drops
Output: 0 packets, 0 bytes, 0 drops
# Verify that the VXLAN tunnels have been assigned to the VXLANs, and the VSI interfaces are the gateway interfaces of their respective VXLANs.
[RouterC] display l2vpn vsi verbose
VSI Name: vpna
VSI Index : 0
VSI State : Up
MTU : 1500
Diffserv Mode : -
Bandwidth : -
Broadcast Restrain : 5120 kbps
Multicast Restrain : 5120 kbps
Unknown Unicast Restrain: 5120 kbps
MAC Learning : Enabled
MAC Table Limit : -
MAC Learning rate : -
Local MAC aging time : 300 sec
Remote MAC aging time : 300 sec
Drop Unknown : Disabled
DSCP : -
Service Class : -
Flooding : Enabled
Statistics : Disabled
Gateway Interface : VSI-interface 1
VXLAN ID : 10
Tunnel Statistics : Disabled
Tunnels:
Tunnel Name Link ID State Type Flood Proxy
Tunnel0 0x5000000 UP Auto Disabled
Tunnel1 0x5000001 UP Auto Disabled
VSI Name: vpnb
VSI Index : 1
VSI State : Up
MTU : 1500
Diffserv Mode : -
Bandwidth : -
Broadcast Restrain : 5120 kbps
Multicast Restrain : 5120 kbps
Unknown Unicast Restrain: 5120 kbps
MAC Learning : Enabled
MAC Table Limit : -
MAC Learning rate : -
Local MAC aging time : 300 sec
Remote MAC aging time : 300 sec
Drop Unknown : Disabled
DSCP : -
Service Class : -
Flooding : Enabled
Statistics : Disabled
Gateway Interface : VSI-interface 2
VXLAN ID : 20
Tunnel Statistics : Disabled
Tunnels:
Tunnel Name Link ID State Type Flood Proxy
Tunnel0 0x5000000 UP Auto Disabled
Tunnel1 0x5000001 UP Auto Disabled
# Verify that Router C has created EVPN ARP entries for the VMs.
[RouterC] display evpn route arp
Flags: D - Dynamic B - BGP L - Local active
G - Gateway S - Static M - Mapping I - Invalid
Public instance Interface: Vsi-interface1
IP address MAC address Router MAC VSI index Flags
10.1.1.1 0003-0003-0003 - 0 GL
10.1.1.10 0000-1234-0001 - 0 B
10.1.1.20 0000-1234-0003 - 0 B
Public instance Interface: Vsi-interface2
IP address MAC address Router MAC VSI index Flags
10.1.2.1 0005-0005-0005 - 1 GL
10.1.2.10 0000-1234-0002 - 1 B
10.1.2.20 0000-1234-0004 - 1 B
# Verify that Router C has created FIB entries for the VMs.
[RouterC] display fib 10.1.1.10
Destination count: 1 FIB entry count: 1
Flag:
U:Usable G:Gateway H:Host B:Blackhole D:Dynamic S:Static
R:Relay F:FRR
Destination/Mask Nexthop Flag OutInterface/Token Label
10.1.1.10/32 10.1.1.10 UH Vsi1 Null
2. Verify that VM 1, VM 2, VM 3, and VM 4 can communicate with one another. (Details not shown.)
Example: Configuring distributed IPv4 EVPN gateways
Network configuration
As shown in Figure 14:
· Configure VXLAN 10 and VXLAN 20 on Router A and Router B to provide connectivity for the VMs in the VXLANs across the network sites.
· Configure Router A and Router B as distributed EVPN gateways to provide gateway services. Configure Router C as a border gateway to provide access to the connected Layer 3 network.
· Configure Router D as an RR to reflect BGP EVPN routes between Router A, Router B, and Router C.
Procedure
1. On VM 1 and VM 3, specify 10.1.1.1 as the gateway address. On VM 2 and VM 4, specify 10.1.2.1 as the gateway address. (Details not shown.)
2. Configure IP addresses and unicast routing settings:
# Assign IP addresses to interfaces, as shown in Figure 14. (Details not shown.)
# Configure OSPF on all transport network routers (Routers A through D) for them to reach one another. (Details not shown.)
3. Configure Router A:
# Enable L2VPN.
<RouterA> system-view
[RouterA] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterA] vxlan tunnel mac-learning disable
[RouterA] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterA] vsi vpna
[RouterA-vsi-vpna] evpn encapsulation vxlan
[RouterA-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterA-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterA-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterA-vsi-vpna] vxlan 10
[RouterA-vsi-vpna-vxlan-10] quit
[RouterA-vsi-vpna] quit
# Create an EVPN instance on VSI vpnb, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterA] vsi vpnb
[RouterA-vsi-vpnb] evpn encapsulation vxlan
[RouterA-vsi-vpnb-evpn-vxlan] route-distinguisher auto
[RouterA-vsi-vpnb-evpn-vxlan] vpn-target auto
[RouterA-vsi-vpnb-evpn-vxlan] quit
# Create VXLAN 20.
[RouterA-vsi-vpnb] vxlan 20
[RouterA-vsi-vpnb-vxlan-20] quit
[RouterA-vsi-vpnb] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterA] bgp 200
[RouterA-bgp-default] peer 4.4.4.4 as-number 200
[RouterA-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterA-bgp-default] address-family l2vpn evpn
[RouterA-bgp-default-evpn] peer 4.4.4.4 enable
[RouterA-bgp-default-evpn] quit
[RouterA-bgp-default] quit
# Map GigabitEthernet 1/2/0/1 to VSI vpna.
[RouterA] interface gigabitethernet 1/2/0/1
[RouterA-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterA-GigabitEthernet1/2/0/1] quit
# Map GigabitEthernet 1/2/0/2 to VSI vpnb.
[RouterA] interface gigabitethernet 1/2/0/2
[RouterA-GigabitEthernet1/2/0/2] xconnect vsi vpnb
[RouterA-GigabitEthernet1/2/0/2] quit
# Configure RD and route target settings for VPN instance vpna.
[RouterA] ip vpn-instance vpna
[RouterA-vpn-instance-vpna] route-distinguisher 1:1
[RouterA-vpn-instance-vpna] address-family ipv4
[RouterA-vpn-ipv4-vpna] vpn-target 2:2
[RouterA-vpn-ipv4-vpna] quit
[RouterA-vpn-instance-vpna] address-family evpn
[RouterA-vpn-evpn-vpna] vpn-target 1:1
[RouterA-vpn-evpn-vpna] quit
[RouterA-vpn-instance-vpna] quit
# Configure VSI-interface 1.
[RouterA] interface vsi-interface 1
[RouterA-Vsi-interface1] ip binding vpn-instance vpna
[RouterA-Vsi-interface1] ip address 10.1.1.1 255.255.255.0
[RouterA-Vsi-interface1] mac-address 1-1-1
[RouterA-Vsi-interface1] distributed-gateway local
[RouterA-Vsi-interface1] local-proxy-arp enable
[RouterA-Vsi-interface1] quit
# Configure VSI-interface 2.
[RouterA] interface vsi-interface 2
[RouterA-Vsi-interface2] ip binding vpn-instance vpna
[RouterA-Vsi-interface2] ip address 10.1.2.1 255.255.255.0
[RouterA-Vsi-interface2] mac-address 2-2-2
[RouterA-Vsi-interface2] distributed-gateway local
[RouterA-Vsi-interface2] local-proxy-arp enable
[RouterA-Vsi-interface2] quit
# Associate VSI-interface 3 with VPN instance vpna, and configure the L3 VXLAN ID as 1000 for the VPN instance.
[RouterA] interface vsi-interface 3
[RouterA-Vsi-interface3] ip binding vpn-instance vpna
[RouterA-Vsi-interface3] l3-vni 1000
[RouterA-Vsi-interface3] quit
# Specify VSI-interface 1 as the gateway interface for VSI vpna.
[RouterA] vsi vpna
[RouterA-vsi-vpna] gateway vsi-interface 1
[RouterA-vsi-vpna] quit
# Specify VSI-interface 2 as the gateway interface for VSI vpnb.
[RouterA] vsi vpnb
[RouterA-vsi-vpnb] gateway vsi-interface 2
[RouterA-vsi-vpnb] quit
4. Configure Router B:
# Enable L2VPN.
<RouterB> system-view
[RouterB] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterB] vxlan tunnel mac-learning disable
[RouterB] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterB] vsi vpna
[RouterB-vsi-vpna] evpn encapsulation vxlan
[RouterB-vsi-vpna-evpn-vxlan] route-distinguisher auto
[RouterB-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterB-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterB-vsi-vpna] vxlan 10
[RouterB-vsi-vpna-vxlan-10] quit
[RouterB-vsi-vpna] quit
# Create an EVPN instance on VSI vpnb, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterB] vsi vpnb
[RouterB-vsi-vpnb] evpn encapsulation vxlan
[RouterB-vsi-vpnb-evpn-vxlan] route-distinguisher auto
[RouterB-vsi-vpnb-evpn-vxlan] vpn-target auto
[RouterB-vsi-vpnb-evpn-vxlan] quit
# Create VXLAN 20.
[RouterB-vsi-vpnb] vxlan 20
[RouterB-vsi-vpnb-vxlan-20] quit
[RouterB-vsi-vpnb] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterB] bgp 200
[RouterB-bgp-default] peer 4.4.4.4 as-number 200
[RouterB-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterB-bgp-default] address-family l2vpn evpn
[RouterB-bgp-default-evpn] peer 4.4.4.4 enable
[RouterB-bgp-default-evpn] quit
[RouterB-bgp-default] quit
# Map GigabitEthernet 1/2/0/1 to VSI vpna.
[RouterB] interface gigabitethernet 1/2/0/1
[RouterB-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterB-GigabitEthernet1/2/0/1] quit
# Map GigabitEthernet 1/2/0/2 to VSI vpnb.
[RouterB] interface gigabitethernet 1/2/0/2
[RouterB-GigabitEthernet1/2/0/2] xconnect vsi vpnb
[RouterB-GigabitEthernet1/2/0/2] quit
# Configure RD and route target settings for VPN instance vpna.
[RouterB] ip vpn-instance vpna
[RouterB-vpn-instance-vpna] route-distinguisher 1:1
[RouterB-vpn-instance-vpna] address-family ipv4
[RouterB-vpn-ipv4-vpna] vpn-target 2:2
[RouterB-vpn-ipv4-vpna] quit
[RouterB-vpn-instance-vpna] address-family evpn
[RouterB-vpn-evpn-vpna] vpn-target 1:1
[RouterB-vpn-evpn-vpna] quit
[RouterB-vpn-instance-vpna] quit
# Configure VSI-interface 1.
[RouterB] interface vsi-interface 1
[RouterB-Vsi-interface1] ip binding vpn-instance vpna
[RouterB-Vsi-interface1] ip address 10.1.1.1 255.255.255.0
[RouterB-Vsi-interface1] mac-address 1-1-1
[RouterB-Vsi-interface1] distributed-gateway local
[RouterB-Vsi-interface1] local-proxy-arp enable
[RouterB-Vsi-interface1] quit
# Configure VSI-interface 2.
[RouterB] interface vsi-interface 2
[RouterB-Vsi-interface2] ip binding vpn-instance vpna
[RouterB-Vsi-interface2] ip address 10.1.2.1 255.255.255.0
[RouterB-Vsi-interface2] mac-address 2-2-2
[RouterB-Vsi-interface2] distributed-gateway local
[RouterB-Vsi-interface2] local-proxy-arp enable
[RouterB-Vsi-interface2] quit
# Associate VSI-interface 3 with VPN instance vpna, and configure the L3 VXLAN ID as 1000 for the VPN instance.
[RouterB] interface vsi-interface 3
[RouterB-Vsi-interface3] ip binding vpn-instance vpna
[RouterB-Vsi-interface3] l3-vni 1000
[RouterB-Vsi-interface3] quit
# Specify VSI-interface 1 as the gateway interface for VSI vpna.
[RouterB] vsi vpna
[RouterB-vsi-vpna] gateway vsi-interface 1
[RouterB-vsi-vpna] quit
# Specify VSI-interface 2 as the gateway interface for VSI vpnb.
[RouterB] vsi vpnb
[RouterB-vsi-vpnb] gateway vsi-interface 2
[RouterB-vsi-vpnb] quit
5. Configure Router C:
# Enable L2VPN.
<RouterC> system-view
[RouterC] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterC] vxlan tunnel mac-learning disable
[RouterC] vxlan tunnel arp-learning disable
# Configure BGP to advertise BGP EVPN routes.
[RouterC] bgp 200
[RouterC-bgp-default] peer 4.4.4.4 as-number 200
[RouterC-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterC-bgp-default] address-family l2vpn evpn
[RouterC-bgp-default-evpn] peer 4.4.4.4 enable
[RouterC-bgp-default-evpn] quit
[RouterC-bgp-default] quit
# Configure RD and route target settings for VPN instance vpna.
[RouterC] ip vpn-instance vpna
[RouterC-vpn-instance-vpna] route-distinguisher 1:1
[RouterC-vpn-instance-vpna] address-family ipv4
[RouterC-vpn-ipv4-vpna] vpn-target 2:2
[RouterC-vpn-ipv4-vpna] quit
[RouterC-vpn-instance-vpna] address-family evpn
[RouterC-vpn-evpn-vpna] vpn-target 1:1
[RouterC-vpn-evpn-vpna] quit
[RouterC-vpn-instance-vpna] quit
# Associate VSI-interface 3 with VPN instance vpna, and configure the L3 VXLAN ID as 1000 for the VPN instance.
[RouterC] interface vsi-interface 3
[RouterC-Vsi-interface3] ip binding vpn-instance vpna
[RouterC-Vsi-interface3] l3-vni 1000
[RouterC-Vsi-interface3] quit
# Configure a default route. The next hop is the IP address of a device in the Layer 3 network.
[RouterC] ip route-static vpn-instance vpna 0.0.0.0 0 20.1.1.100
# Import the default route to the BGP IPv4 unicast routing table of VPN instance vpna.
[RouterC] bgp 200
[RouterC-bgp-default] ip vpn-instance vpna
[RouterC-bgp-default-vpna] address-family ipv4 unicast
[RouterC-bgp-default-ipv4-vpna] default-route imported
[RouterC-bgp-default-ipv4-vpna] import-route static
[RouterC-bgp-default-ipv4-vpna] quit
[RouterC-bgp-default-vpna] quit
[RouterC-bgp-default] quit
# Associate GigabitEthernet 1/2/0/2 with VPN instance vpna. GigabitEthernet 1/2/0/2 provides access to the Layer 3 network connected to Router C.
[RouterC] interface gigabitethernet 1/2/0/2
[RouterC-GigabitEthernet1/2/0/2] ip binding vpn-instance vpna
[RouterC-GigabitEthernet1/2/0/2] ip address 20.1.1.3 24
[RouterC-GigabitEthernet1/2/0/2] quit
6. Configure Router D:
# Establish BGP connections with other transport network routers.
<RouterD> system-view
[RouterD] bgp 200
[RouterD-bgp-default] group evpn
[RouterD-bgp-default] peer 1.1.1.1 group evpn
[RouterD-bgp-default] peer 2.2.2.2 group evpn
[RouterD-bgp-default] peer 3.3.3.3 group evpn
[RouterD-bgp-default] peer evpn as-number 200
[RouterD-bgp-default] peer evpn connect-interface loopback 0
# Configure BGP to advertise BGP EVPN routes, and disable route target filtering for BGP EVPN routes.
[RouterD-bgp-default] address-family l2vpn evpn
[RouterD-bgp-default-evpn] peer evpn enable
[RouterD-bgp-default-evpn] undo policy vpn-target
# Configure Router D as an RR.
[RouterD-bgp-default-evpn] peer evpn reflect-client
[RouterD-bgp-default-evpn] quit
[RouterD-bgp-default] quit
Verifying the configuration
1. Verify the distributed EVPN gateway settings on Router A:
# Verify that Router A has advertised the IP prefix advertisement routes for the gateways and the MAC/IP advertisement routes and IMET routes for each VSI. Verify that Router A has received the IP prefix advertisement routes for the gateways and the MAC/IP advertisement routes and IMET routes for each VSI from Router B.
[RouterA] display bgp l2vpn evpn
BGP local router ID is 1.1.1.1
Status codes: * - valid, > - best, d - dampened, h - history,
s - suppressed, S - stale, i - internal, e - external
a - additional-path
Origin: i - IGP, e - EGP, ? - incomplete
Total number of routes from all PEs: 14
Route distinguisher: 1:1
Total number of routes: 4
Network NextHop MED LocPrf PrefVal Path/Ogn
* > [5][0][24][10.1.1.0]/80
0.0.0.0 0 100 32768 i
* > [5][0][24][10.1.2.0]/80
0.0.0.0 0 100 32768 i
* >i [5][0][24][10.1.1.0]/80
2.2.2.2 0 100 0 i
* >i [5][0][24][10.1.2.0]/80
2.2.2.2 0 100 0 i
Route distinguisher: 1:10
Total number of routes: 5
Network NextHop MED LocPrf PrefVal Path/Ogn
* > [2][0][48][0000-1234-0001][0][0.0.0.0]/104
0.0.0.0 0 100 32768 i
* > [2][0][48][0000-1234-0001][32][10.1.1.10]/136
0.0.0.0 0 100 32768 i
* >i [2][0][48][0000-1234-0003][32][10.1.1.20]/136
2.2.2.2 0 100 0 i
* > [3][0][32][1.1.1.1]/80
0.0.0.0 0 100 32768 i
* >i [3][0][32][2.2.2.2]/80
2.2.2.2 0 100 32768 i
Route distinguisher: 1:20
Total number of routes: 5
Network NextHop MED LocPrf PrefVal Path/Ogn
* > [2][0][48][0000-1234-0002][0][0.0.0.0]/104
0.0.0.0 0 100 32768 i
* > [2][0][48][0000-1234-0002][32][10.1.2.10]/136
0.0.0.0 0 100 32768 i
* >i [2][0][48][0000-1234-0004][32][10.1.2.20]/136
2.2.2.2 0 100 0 i
* > [3][0][32][1.1.1.1]/80
0.0.0.0 0 100 32768 i
* >i [3][0][32][2.2.2.2]/80
2.2.2.2 0 100 32768 i
# Verify that the VXLAN tunnel interfaces are up on Router A. (This example uses Tunnel 0.)
[RouterA] display interface tunnel 0
Tunnel0
Current state: UP
Line protocol state: UP
Description: Tunnel0 Interface
Bandwidth: 64 kbps
Maximum transmission unit: 1464
Internet protocol processing: Disabled
Output queue - Urgent queuing: Size/Length/Discards 0/100/0
Output queue - Protocol queuing: Size/Length/Discards 0/500/0
Output queue - FIFO queuing: Size/Length/Discards 0/75/0
Last clearing of counters: Never
Tunnel source 1.1.1.1, destination 2.2.2.2
Tunnel protocol/transport UDP_VXLAN/IP
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 0 packets, 0 bytes, 0 drops
Output: 0 packets, 0 bytes, 0 drops
# Verify that the VSI interfaces are up on Router A. (This example uses VSI-interface 1.)
[RouterA] display interface vsi-interface 1
Vsi-interface1
Current state: UP
Line protocol state: UP
Description: Vsi-interface1 Interface
Bandwidth: 1000000 kbps
Maximum transmission unit: 1500
Internet address: 10.1.1.1/24 (primary)
IP packet frame type: Ethernet II, hardware address: 0003-0003-0003
IPv6 packet frame type: Ethernet II, hardware address: 0003-0003-0003
Physical: Unknown, baudrate: 1000000 kbps
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 0 packets, 0 bytes, 0 drops
Output: 0 packets, 0 bytes, 0 drops
# Verify that the VXLAN tunnels have been assigned to the VXLANs, and the VSI interfaces are the gateway interfaces of their respective VXLANs.
[RouterA] display l2vpn vsi verbose
VSI Name: Auto_L3VNI1000_3
VSI Index : 1
VSI State : Down
MTU : 1500
Diffserv Mode : -
Bandwidth : -
Broadcast Restrain : 5120 kbps
Multicast Restrain : 5120 kbps
Unknown Unicast Restrain: 5120 kbps
MAC Learning : Enabled
MAC Table Limit : -
MAC Learning rate : -
Local MAC aging time : 300 sec
Remote MAC aging time : 300 sec
Drop Unknown : Disabled
DSCP : -
Service Class : -
Flooding : Enabled
Statistics : Disabled
Gateway Interface : VSI-interface 3
VXLAN ID : 1000
Tunnel Statistics : Disabled
VSI Name: vpna
VSI Index : 0
VSI State : Up
MTU : 1500
Diffserv Mode : -
Bandwidth : -
Broadcast Restrain : 5120 kbps
Multicast Restrain : 5120 kbps
Unknown Unicast Restrain: 5120 kbps
MAC Learning : Enabled
MAC Table Limit : -
MAC Learning rate : -
Local MAC aging time : 300 sec
Remote MAC aging time : 300 sec
Drop Unknown : Disabled
DSCP : -
Service Class : -
Flooding : Enabled
Statistics : Disabled
Gateway Interface : VSI-interface 1
VXLAN ID : 10
Tunnel Statistics : Disabled
ACs:
AC Link ID State
GE1/2/0/1 0 Up
VSI Name: vpnb
VSI Index : 2
VSI State : Up
MTU : 1500
Diffserv Mode : -
Bandwidth : -
Broadcast Restrain : 5120 kbps
Multicast Restrain : 5120 kbps
Unknown Unicast Restrain: 5120 kbps
MAC Learning : Enabled
MAC Table Limit : -
MAC Learning rate : -
Local MAC aging time : 300 sec
Remote MAC aging time : 300 sec
Drop Unknown : Disabled
DSCP : -
Service Class : -
Flooding : Enabled
Statistics : Disabled
Gateway Interface : VSI-interface 2
VXLAN ID : 20
Tunnel Statistics : Disabled
ACs:
AC Link ID State
GE1/2/0/2 1 Up
# Verify that Router A has created ARP entries for the VMs.
[RouterA] display arp
Type: S-Static D-Dynamic O-Openflow R-Rule M-Multiport I-Invalid
IP address MAC address VLAN/VSI name Interface Aging Type
10.1.1.10 0000-1234-0001 0 0x0 20 D
10.1.2.10 0000-1234-0002 0 0x0 19 D
2.2.2.2 a0ce-5e24-0100 1 Tunnel0 -- R
# Verify that Router A has created EVPN ARP entries for the local VMs.
[RouterA] display evpn route arp
Flags: D - Dynamic B - BGP L - Local active
G - Gateway S - Static M - Mapping I - Invalid
VPN instance:vpna Interface:Vsi-interface1
IP address MAC address Router MAC VSI Index Flags
10.1.1.1 0001-0001-0001 a0ce-7e40-0400 0 GL
10.1.1.10 0000-1234-0001 a0ce-7e40-0400 0 DL
10.1.2.10 0000-1234-0002 a0ce-7e40-0400 0 DL
10.1.1.20 0000-1234-0003 a0ce-7e40-0400 0 B
10.1.2.20 0000-1234-0004 a0ce-7e40-0400 0 B
2. Verify that VM 1, VM 2, VM 3, and VM 4 can communicate with one another. (Details not shown.)
Example: Configuring IPv4 EVPN VXLAN multihoming
Network configuration
As shown in Figure 15:
· Configure VXLANs as follows:
¡ Configure VXLAN 10 on Router A, Router B, and Router C. Configure Router A and Router B as redundant VTEPs for Server 2, and configure Router B and Router C as redundant VTEPs for Server 3.
¡ Configure VXLAN 20 on Router C.
· Configure Router A, Router B, and Router C as distributed EVPN gateways.
· Configure Router D as an RR to reflect BGP EVPN routes between Router A, Router B, and Router C.
Procedure
1. On VM 1, VM 2, and VM 3, specify 10.1.1.1 as the gateway address. On VM 4, specify 20.1.1.1 as the gateway address. (Details not shown.)
2. Configure IP addresses and unicast routing settings:
# Assign IP addresses to the interfaces, as shown in Figure 15. (Details not shown.)
# Configure OSPF on all transport network routers (Routers A through D) for them to reach one another. (Details not shown.)
3. Configure Router A:
# Enable L2VPN.
<RouterA> system-view
[RouterA] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterA] vxlan tunnel mac-learning disable
[RouterA] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterA] vsi vpna
[RouterA-vsi-vpna] evpn encapsulation vxlan
[RouterA-vsi-vpna-evpn-vxlan] route-distinguisher auto router-id
[RouterA-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterA-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterA-vsi-vpna] vxlan 10
[RouterA-vsi-vpna-vxlan-10] quit
[RouterA-vsi-vpna] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterA] bgp 200
[RouterA-bgp-default] peer 4.4.4.4 as-number 200
[RouterA-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterA-bgp-default] address-family l2vpn evpn
[RouterA-bgp-default-evpn] peer 4.4.4.4 enable
[RouterA-bgp-default-evpn] quit
[RouterA-bgp-default] quit
# Map GigabitEthernet 1/2/0/1 to VSI vpna.
[RouterA] interface gigabitethernet 1/2/0/1
[RouterA-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterA-GigabitEthernet1/2/0/1] quit
# Assign an ESI to GigabitEthernet 1/2/0/2.
[RouterA] interface gigabitethernet 1/2/0/2
[RouterA-GigabitEthernet1/2/0/2] esi 0.0.0.0.1
# Map GigabitEthernet 1/2/0/2 to VSI vpna.
[RouterA-GigabitEthernet1/2/0/2] xconnect vsi vpna
[RouterA-GigabitEthernet1/2/0/2] quit
# Configure RD and route target settings for VPN instance l3vpna.
[RouterA] ip vpn-instance l3vpna
[RouterA-vpn-instance-l3vpna] route-distinguisher 1:1
[RouterA-vpn-instance-l3vpna] address-family ipv4
[RouterA-vpn-ipv4-l3vpna] vpn-target 2:2
[RouterA-vpn-ipv4-l3vpna] quit
[RouterA-vpn-instance-l3vpna] address-family evpn
[RouterA-vpn-evpn-l3vpna] vpn-target 1:1
[RouterA-vpn-evpn-l3vpna] quit
[RouterA-vpn-instance-l3vpna] quit
# Configure VSI-interface 1.
[RouterA] interface vsi-interface 1
[RouterA-Vsi-interface1] ip binding vpn-instance l3vpna
[RouterA-Vsi-interface1] ip address 10.1.1.1 255.255.255.0
[RouterA-Vsi-interface1] mac-address 1-1-1
[RouterA-Vsi-interface1] distributed-gateway local
[RouterA-Vsi-interface1] local-proxy-arp enable
[RouterA-Vsi-interface1] quit
# Associate VSI-interface 3 with VPN instance l3vpna, and configure the L3 VXLAN ID as 1000 for the VPN instance.
[RouterA] interface vsi-interface 3
[RouterA-Vsi-interface3] ip binding vpn-instance l3vpna
[RouterA-Vsi-interface3] l3-vni 1000
[RouterA-Vsi-interface3] quit
# Specify VSI-interface 1 as the gateway interface for VSI vpna.
[RouterA] vsi vpna
[RouterA-vsi-vpna] gateway vsi-interface 1
[RouterA-vsi-vpna] quit
4. Configure Router B:
# Enable L2VPN.
<RouterB> system-view
[RouterB] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterB] vxlan tunnel mac-learning disable
[RouterB] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterB] vsi vpna
[RouterB-vsi-vpna] evpn encapsulation vxlan
[RouterB-vsi-vpna-evpn-vxlan] route-distinguisher auto router-id
[RouterB-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterB-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterB-vsi-vpna] vxlan 10
[RouterB-vsi-vpna-vxlan-10] quit
[RouterB-vsi-vpna] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterB] bgp 200
[RouterB-bgp-default] peer 4.4.4.4 as-number 200
[RouterB-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterB-bgp-default] address-family l2vpn evpn
[RouterB-bgp-default-evpn] peer 4.4.4.4 enable
[RouterB-bgp-default-evpn] quit
[RouterB-bgp-default] quit
# Assign an ESI to GigabitEthernet 1/2/0/1.
[RouterB] interface gigabitethernet 1/2/0/1
[RouterB-GigabitEthernet1/2/0/1] esi 0.0.0.0.1
# Map GigabitEthernet 1/2/0/1 to VSI vpna.
[RouterB-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterB-GigabitEthernet1/2/0/1] quit
# Assign an ESI to GigabitEthernet 1/2/0/2.
[RouterB] interface gigabitethernet 1/2/0/2
[RouterB-GigabitEthernet1/2/0/2] esi 0.0.0.0.2
# Map GigabitEthernet 1/2/0/2 to VSI vpna.
[RouterB-GigabitEthernet1/2/0/2] xconnect vsi vpna
[RouterB-GigabitEthernet1/2/0/2] quit
# Configure RD and route target settings for VPN instance l3vpna.
[RouterB] ip vpn-instance l3vpna
[RouterB-vpn-instance-l3vpna] route-distinguisher 2:2
[RouterB-vpn-instance-l3vpna] address-family ipv4
[RouterB-vpn-ipv4-l3vpna] vpn-target 2:2
[RouterB-vpn-ipv4-l3vpna] quit
[RouterB-vpn-instance-l3vpna] address-family evpn
[RouterB-vpn-evpn-l3vpna] vpn-target 1:1
[RouterB-vpn-evpn-l3vpna] quit
[RouterB-vpn-instance-l3vpna] quit
# Configure VSI-interface 1.
[RouterB] interface vsi-interface 1
[RouterB-Vsi-interface1] ip binding vpn-instance l3vpna
[RouterB-Vsi-interface1] ip address 10.1.1.1 255.255.255.0
[RouterB-Vsi-interface1] mac-address 1-1-1
[RouterB-Vsi-interface1] distributed-gateway local
[RouterB-Vsi-interface1] local-proxy-arp enable
[RouterB-Vsi-interface1] quit
# Associate VSI-interface 3 with VPN instance l3vpna, and configure the L3 VXLAN ID as 1000 for the VPN instance.
[RouterB] interface vsi-interface 3
[RouterB-Vsi-interface3] ip binding vpn-instance l3vpna
[RouterB-Vsi-interface3] l3-vni 1000
[RouterB-Vsi-interface3] quit
# Specify VSI-interface 1 as the gateway interface for VSI vpna.
[RouterB] vsi vpna
[RouterB-vsi-vpna] gateway vsi-interface 1
[RouterB-vsi-vpna] quit
5. Configure Router C:
# Enable L2VPN.
<RouterC> system-view
[RouterC] l2vpn enable
# Disable remote MAC address learning and remote ARP learning.
[RouterC] vxlan tunnel mac-learning disable
[RouterC] vxlan tunnel arp-learning disable
# Create an EVPN instance on VSI vpna, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterC] vsi vpna
[RouterC-vsi-vpna] evpn encapsulation vxlan
[RouterC-vsi-vpna-evpn-vxlan] route-distinguisher auto router-id
[RouterC-vsi-vpna-evpn-vxlan] vpn-target auto
[RouterC-vsi-vpna-evpn-vxlan] quit
# Create VXLAN 10.
[RouterC-vsi-vpna] vxlan 10
[RouterC-vsi-vpna-vxlan-10] quit
[RouterC-vsi-vpna] quit
# Create an EVPN instance on VSI vpnb, and configure the router to automatically generate an RD and a route target for the EVPN instance.
[RouterC] vsi vpnb
[RouterC-vsi-vpnb] evpn encapsulation vxlan
[RouterC-vsi-vpnb-evpn-vxlan] route-distinguisher auto router-id
[RouterC-vsi-vpnb-evpn-vxlan] vpn-target auto
[RouterC-vsi-vpnb-evpn-vxlan] quit
# Create VXLAN 20.
[RouterC-vsi-vpnb] vxlan 20
[RouterC-vsi-vpnb-vxlan-20] quit
[RouterC-vsi-vpnb] quit
# Configure BGP to advertise BGP EVPN routes.
[RouterC] bgp 200
[RouterC-bgp-default] peer 4.4.4.4 as-number 200
[RouterC-bgp-default] peer 4.4.4.4 connect-interface loopback 0
[RouterC-bgp-default] address-family l2vpn evpn
[RouterC-bgp-default-evpn] peer 4.4.4.4 enable
[RouterC-bgp-default-evpn] quit
[RouterC-bgp-default] quit
# Assign an ESI to GigabitEthernet 1/2/0/1.
[RouterC] interface gigabitethernet 1/2/0/1
[RouterC-GigabitEthernet1/2/0/1] esi 0.0.0.0.2
# Map GigabitEthernet 1/2/0/1 to VSI vpna.
[RouterC-GigabitEthernet1/2/0/1] xconnect vsi vpna
[RouterC-GigabitEthernet1/2/0/1] quit
# Map GigabitEthernet 1/2/0/2 to VSI vpnb.
[RouterC] interface gigabitethernet 1/2/0/2
[RouterC-GigabitEthernet1/2/0/2] xconnect vsi vpna
[RouterC-GigabitEthernet1/2/0/2] quit
# Configure RD and route target settings for VPN instance l3vpna.
[RouterC] ip vpn-instance l3vpna
[RouterC-vpn-instance-l3vpna] route-distinguisher 3:3
[RouterC-vpn-instance-l3vpna] address-family ipv4
[RouterC-vpn-ipv4-l3vpna] vpn-target 2:2
[RouterC-vpn-ipv4-l3vpna] quit
[RouterC-vpn-instance-l3vpna] address-family evpn
[RouterC-vpn-evpn-l3vpna] vpn-target 1:1
[RouterC-vpn-evpn-l3vpna] quit
[RouterC-vpn-instance-l3vpna] quit
# Configure VSI-interface 1.
[RouterC] interface vsi-interface 1
[RouterC-Vsi-interface1] ip binding vpn-instance l3vpna
[RouterC-Vsi-interface1] ip address 10.1.1.1 255.255.255.0
[RouterC-Vsi-interface1] mac-address 1-1-1
[RouterC-Vsi-interface1] distributed-gateway local
[RouterC-Vsi-interface1] local-proxy-arp enable
[RouterC-Vsi-interface1] quit
# Configure VSI-interface 2.
[RouterC] interface vsi-interface 2
[RouterC-Vsi-interface2] ip binding vpn-instance l3vpna
[RouterC-Vsi-interface2] ip address 20.1.1.1 255.255.255.0
[RouterC-Vsi-interface2] mac-address 2-2-2
[RouterC-Vsi-interface2] distributed-gateway local
[RouterC-Vsi-interface2] local-proxy-arp enable
[RouterC-Vsi-interface2] quit
# Associate VSI-interface 3 with VPN instance l3vpna, and configure the L3 VXLAN ID as 1000 for the VPN instance.
[RouterC] interface vsi-interface 3
[RouterC-Vsi-interface3] ip binding vpn-instance l3vpna
[RouterC-Vsi-interface3] l3-vni 1000
[RouterC-Vsi-interface3] quit
# Specify VSI-interface 1 as the gateway interface for VSI vpna.
[RouterC] vsi vpna
[RouterC-vsi-vpna] gateway vsi-interface 1
[RouterC-vsi-vpna] quit
# Specify VSI-interface 2 as the gateway interface for VSI vpnb.
[RouterC] vsi vpnb
[RouterC-vsi-vpnb] gateway vsi-interface 2
[RouterC-vsi-vpnb] quit
6. Configure Router D:
# Establish BGP connections with other transport network routers.
<RouterD> system-view
[RouterD] bgp 200
[RouterD-bgp-default] group evpn
[RouterD-bgp-default] peer 1.1.1.1 group evpn
[RouterD-bgp-default] peer 2.2.2.2 group evpn
[RouterD-bgp-default] peer 3.3.3.3 group evpn
[RouterD-bgp-default] peer evpn as-number 200
[RouterD-bgp-default] peer evpn connect-interface loopback 0
# Configure BGP to advertise BGP EVPN routes, and disable route target filtering for BGP EVPN routes.
[RouterD-bgp-default] address-family l2vpn evpn
[RouterD-bgp-default-evpn] peer evpn enable
[RouterD-bgp-default-evpn] undo policy vpn-target
# Configure Router D as an RR.
[RouterD-bgp-default-evpn] peer evpn reflect-client
[RouterD-bgp-default-evpn] quit
[RouterD-bgp-default] quit
Verifying the configuration
1. Verify the EVPN VXLAN multihoming configuration on Router C.
# Verify that Router C has advertised and received the following BGP EVPN routes:
¡ IP prefix advertisement routes for the gateways.
¡ IMET routes for VSIs.
¡ MAC/IP advertisement routes.
¡ Ethernet auto-discovery routes and Ethernet segment routes.
<RouterC> display bgp l2vpn evpn
BGP local router ID is 3.3.3.3
Status codes: * - valid, > - best, d - dampened, h - history
s - suppressed, S - stale, i - internal, e - external
a - additional-path
Origin: i - IGP, e - EGP, ? - incomplete
Total number of routes from all PEs: 17
Route distinguisher: 1:1
Total number of routes: 1
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [5][0][24][10.1.1.0]/80
1.1.1.1 0 100 0 i
Route distinguisher: 2:2
Total number of routes: 1
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [5][0][24][10.1.1.0]/80
2.2.2.2 0 100 0 i
Route distinguisher: 3:3(l3vpna)
Total number of routes: 10
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [1][0000.0000.0000.0000.0001][2]/120
1.1.1.1 0 100 0 i
* i 2.2.2.2 0 100 0 i
* >i [1][0000.0000.0000.0000.0001][4294967295]/120
1.1.1.1 0 100 0 i
* i 2.2.2.2 0 100 0 i
* >i [1][0000.0000.0000.0000.0002][2]/120
2.2.2.2 0 100 0 i
* >i [1][0000.0000.0000.0000.0002][4294967295]/120
2.2.2.2 0 100 0 i
* >i [2][2][48][0001-0001-0010][32][10.1.1.10]/136
1.1.1.1 0 100 0 i
* >i [2][2][48][0001-0001-0020][32][10.1.1.20]/136
2.2.2.2 0 100 0 i
* > [5][0][24][10.1.1.0]/80
0.0.0.0 0 100 32768 i
* > [5][0][24][20.1.1.0]/80
0.0.0.0 0 100 32768 i
Route distinguisher: 1.1.1.1:0
Total number of routes: 1
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [4][0000.0000.0000.0000.0001][32][1.1.1.1]/128
1.1.1.1 0 100 0 i
Route distinguisher: 1.1.1.1:1
Total number of routes: 5
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [1][0000.0000.0000.0000.0001][2]/120
1.1.1.1 0 100 0 i
* >i [1][0000.0000.0000.0000.0001][4294967295]/120
1.1.1.1 0 100 0 i
* >i [2][2][48][0001-0001-0010][0][0.0.0.0]/104
1.1.1.1 0 100 0 i
* >i [2][2][48][0001-0001-0010][32][10.1.1.10]/136
1.1.1.1 0 100 0 i
* >i [3][0][32][1.1.1.1]/80
1.1.1.1 0 100 0 i
Route distinguisher: 2.2.2.2:0
Total number of routes: 2
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [4][0000.0000.0000.0000.0001][32][2.2.2.2]/128
2.2.2.2 0 100 0 i
* >i [4][0000.0000.0000.0000.0002][32][2.2.2.2]/128
2.2.2.2 0 100 0 i
Route distinguisher: 2.2.2.2:1
Total number of routes: 7
Network NextHop MED LocPrf PrefVal Path/Ogn
* >i [1][0000.0000.0000.0000.0001][2]/120
2.2.2.2 0 100 0 i
* >i [1][0000.0000.0000.0000.0001][4294967295]/120
2.2.2.2 0 100 0 i
* >i [1][0000.0000.0000.0000.0002][2]/120
2.2.2.2 0 100 0 i
* >i [1][0000.0000.0000.0000.0002][4294967295]/120
2.2.2.2 0 100 0 i
* >i [2][2][48][0001-0001-0020][0][0.0.0.0]/104
2.2.2.2 0 100 0 i
* >i [2][2][48][0001-0001-0020][32][10.1.1.20]/136
2.2.2.2 0 100 0 i
* >i [3][0][32][2.2.2.2]/80
2.2.2.2 0 100 0 i
Route distinguisher: 3.3.3.3:0
Total number of routes: 1
Network NextHop MED LocPrf PrefVal Path/Ogn
* > [4][0000.0000.0000.0000.0002][32][3.3.3.3]/128
0.0.0.0 0 100 32768 i
Route distinguisher: 3.3.3.3:1
Total number of routes: 5
Network NextHop MED LocPrf PrefVal Path/Ogn
* > [1][0000.0000.0000.0000.0002][2]/120
0.0.0.0 0 100 32768 i
* > [1][0000.0000.0000.0000.0002][4294967295]/120
0.0.0.0 0 100 32768 i
* > [2][2][48][0001-0001-0030][0][0.0.0.0]/104
0.0.0.0 0 100 32768 i
* > [2][2][48][0001-0001-0030][32][10.1.1.30]/136
0.0.0.0 0 100 32768 i
* > [3][0][32][3.3.3.3]/80
0.0.0.0 0 100 32768 i
Route distinguisher: 3.3.3.3:2
Total number of routes: 3
Network NextHop MED LocPrf PrefVal Path/Ogn
* > [2][2][48][0002-0001-0010][0][0.0.0.0]/104
0.0.0.0 0 100 32768 i
* > [2][2][48][0002-0001-0010][32][20.1.1.10]/136
0.0.0.0 0 100 32768 i
* > [3][0][32][3.3.3.3]/80
0.0.0.0 0 100 32768 i
# Verify that Router C has ECMP routes to VM 2.
<RouterC> display evpn routing-table vpn-instance l3vpna
Flags: E - with valid ESI A - AD ready L - Local ES exists
VPN instance:l3vpna Local L3VNI:1000
IP address Next hop Outgoing interface NibID Flags
10.1.1.10 1.1.1.1 Vsi-interface3 0x18000001 -
10.1.1.20 2.2.2.2 Vsi-interface3 0x18000000 EA
1.1.1.1 Vsi-interface3 0x18000001 EA
# Verify that Router C has equal-cost L2VPN MAC address entries and EVPN MAC address entries for VM 2.
<RouterC> display l2vpn mac-address
MAC Address State VSI Name Link ID/Name Aging
0001-0001-0010 EVPN vpna Tunnel0 NotAging
0001-0001-0020 EVPN vpna Tunnel0 NotAging
Tunnel1 NotAging
0001-0001-0030 Dynamic vpna 0 NotAging
0002-0001-0010 Dynamic vpnb 0 NotAging
<RouterC> display evpn route mac
Flags: D - Dynamic B - BGP L - Local active
G - Gateway S - Static M - Mapping I - Invalid
E – Multihoming ES sync
VSI name: vpna
MAC address Link ID/Name Flags Encap Next hop
0001-0001-0030 0 DL VXLAN -
0001-0001-0010 Tunnel0 B VXLAN 1.1.1.1
0001-0001-0020 Tunnel0 B VXLAN 1.1.1.1
Tunnel1 B VXLAN 2.2.2.2
VSI name: vpnb
MAC address Link ID/Name Flags Next hop
0002-0001-0010 0 DL -
# Verify that Router C has information about local and remote ESs.
<RouterC> display evpn es local
Redundancy mode: A - All active, S - Single active
VSI name : vpna
ESI Tag ID DF address Mode State ESI label
0000.0000.0000.0000.0002 - 2.2.2.2 A Up -
<RouterC> display evpn es remote
Control Flags: P - Primary, B - Backup, C - Control word
VSI name : vpna
ESI : 0000.0000.0000.0000.0001
A-D per ES routes :
Peer IP Remote Redundancy mode
1.1.1.1 All-active
2.2.2.2 All-active
A-D per EVI routes :
Tag ID Peer IP
- 1.1.1.1
- 2.2.2.2
ESI : 0000.0000.0000.0000.0002
Ethernet segment routes :
2.2.2.2
A-D per ES routes :
Peer IP Remote Redundancy mode
2.2.2.2 All-active
A-D per EVI routes :
Tag ID Peer IP
- 2.2.2.2
2. Verify that the VMs can communicate with one another.