05-IPv6组播路由与转发配置
本章节下载: 05-IPv6组播路由与转发配置 (326.69 KB)
每个IPv6组播路由协议都有一个自身的路由表,综合成一个总的IPv6组播路由表,由一系列(S,G)和(*,G)表项组成,即由组播源S向IPv6组播组G发送IPv6组播数据的IPv6组播路由信息。其中最优IPv6组播路由下发到IPv6组播转发表中,控制IPv6组播数据的转发。IPv6组播传输路径上的设备根据IPv6组播转发表转发IPv6组播数据的同时还需执行RPF(Reverse Path Forwarding,逆向路径转发)机制确保IPv6组播数据沿正确路径传输。
IPv6组播路由协议在创建和维护IPv6组播路由表项时,运用了RPF(Reverse Path Forwarding,逆向路径转发)检查机制,以确保IPv6组播数据能够沿正确的路径传输,同时还能避免由于各种原因而造成的环路。
执行RPF检查的过程如下:
(1) 首先,以“报文源”的IPv6地址为目的地址,分别从IPv6单播路由表和IPv6 MBGP路由表中各选出一条最优路由。
根据IPv6组播报文传输的具体情况不同,“报文源”所代表的具体含义也不同:
· 如果当前报文沿从组播源到接收者或RP(Rendezvous Point,汇集点)的SPT(Shortest Path Tree,最短路径树)进行传输,则以组播源为“报文源”进行RPF检查。
· 如果当前报文沿从RP到接收者的RPT(Rendezvous Point Tree,共享树)进行传输,或者沿从组播源到RP的组播源侧RPT进行传输,则都以RP为“报文源”进行RPF检查。
· 如果当前报文为BSR(Bootstrap Router,自举路由器)报文,沿从BSR到各设备的路径进行传输,则以BSR为“报文源”进行RPF检查。
(2) 然后,从这些最优路由中再选出一条作为RPF路由。选取规则如下:
· 如果配置了按照最长匹配选择路由,则:
¡ 选择前缀长度最长的路由。
¡ 如果前缀长度相同,则选择路由优先级最高的路由。
¡ 如果路由优先级也相同,则按照IPv6 MBGP路由、IPv6单播路由的顺序进行选择。
¡ 如果存在等价路由,则选择下一跳的IPv6地址较大者。
· 如果没有配置按照最长匹配选择路由,则:
¡ 选择路由优先级最高的路由。
¡ 如果路由优先级相同,则按照IPv6 MBGP路由、IPv6单播路由的顺序进行选择。
¡ 如果存在等价路由,则选择下一跳的IP地址较大者。
RPF路由中包含有RPF接口和RPF邻居的信息,不论RPF路由为IPv6单播路由还是IPv6 MBGP路由,该路由表项的出接口都是RPF接口,下一跳都是RPF邻居。
(3) 最后,判断报文实际到达的接口与RPF接口是否相同:
· 相同,RPF检查通过。
· 不同,RPF检查失败。
对每一个收到的IPv6组播数据报文都进行RPF检查会给设备带来较大负担,而利用IPv6组播转发表可以解决这个问题。在建立IPv6组播路由和转发表时,会把IPv6组播数据报文(S,G)的RPF接口记录为(S,G)表项的入接口。当设备收到IPv6组播数据报文(S,G)后,查找IPv6组播转发表:
· 如果IPv6组播转发表中不存在(S,G)表项,则对该报文执行RPF检查,将其RPF接口作为入接口,结合相关路由信息创建相应的表项,并下发到IPv6组播转发表中:
¡ 若该报文实际到达的接口正是其RPF接口,则RPF检查通过,向所有的出接口转发该报文;
¡ 若该报文实际到达的接口不是其RPF接口,则RPF检查失败,丢弃该报文。
· 如果IPv6组播转发表中已存在(S,G)表项,且该报文实际到达的接口与入接口相匹配,则向所有的出接口转发该报文。
· 如果IPv6组播转发表中已存在(S,G)表项,但该报文实际到达的接口与入接口不匹配,则对此报文执行RPF检查:
¡ 若其RPF接口与入接口一致,则说明(S,G)表项正确,丢弃这个来自错误路径的报文;
¡ 若其RPF接口与入接口不符,则说明(S,G)表项已过时,于是把入接口更新为RPF接口。如果该报文实际到达的接口正是其RPF接口,则向所有的出接口转发该报文,否则将其丢弃。
图1-1 RPF检查过程
如图1-1所示,假设网络中IPv6单播路由畅通,未配置IPv6 MBGP。IPv6组播报文(S,G)沿从组播源(Source)到接收者(Receiver)的SPT进行传输。假定Device C上的IPv6组播转发表中已存在(S,G)表项,其记录的入接口为Port A:
· 如果该IPv6组播报文从接口Port A到达Device C,与(S,G)表项的入接口相匹配,则向所有的出接口转发该报文。
· 如果该IPv6组播报文从接口Port B到达Device C,与(S,G)表项的入接口不匹配,则对其执行RPF检查:通过查找IPv6单播路由表发现到达Source的出接口(即RPF接口)是Port A,与(S,G)表项的入接口一致。这说明(S,G)表项是正确的,该报文来自错误的路径,RPF检查失败,于是丢弃该报文。
网络中可能存在不支持IPv6组播协议的设备,从IPv6组播源发出的IPv6组播数据沿IPv6组播设备逐跳转发,当下一跳设备不支持IPv6组播协议时,IPv6组播转发路径将被阻断。而通过在处于IPv6单播网段两端的IPv6组播设备之间建立隧道,则可以实现跨IPv6单播网段的IPv6组播数据转发。
图1-2 使用隧道传输IPv6组播数据
如图1-2所示,在IPv6组播设备Device A和Device B之间建立隧道。Device A将IPv6组播数据封装在IPv6单播报文中,通过IPv6单播设备转发至隧道另一端的Device B,再由Device B将IPv6单播报文头剥掉后继续进行IPv6组播传输。
IPv6组播路由与转发配置任务如下:
(1) 使能IPv6组播路由
(2) (可选)配置按照最长匹配选择RPF路由
(3) (可选)配置 IPv6组播负载分担
(4) (可选)配置IPv6组播转发边界
(5) (可选)配置缓存未知IPv6组播数据报文的最大数目
(6) (可选)配置跨VPN的IPv6组播转发路由选路策略
在配置IPv6组播路由与转发之前,需配置任一IPv6单播路由协议,实现域内网络层互通。
在公网实例或VPN实例中配置各项三层IPv6组播功能之前,必须先在该实例中使能IPv6组播路由。
(1) 进入系统视图。
system-view
(2) 使能IPv6组播路由,并进入IPv6 MRIB(Multicast Routing Information Base,组播路由信息库)视图。
ipv6 multicast routing [ vpn-instance vpn-instance-name ]
缺省情况下,IPv6组播路由处于关闭状态。
在未配置按照最长匹配选择RPF路由之前,RPF检查以最优路由作为RPF路由。在配置按照最长匹配选择RPF路由之后,RPF检查将按照最长匹配选择RPF路由。有关RPF路由选择的详细介绍,请参见“1.1.1 1. RPF检查过程”。
system-view
(2) 进入IPv6 MRIB视图。
ipv6 multicast routing [ vpn-instance vpn-instance-name ]
(3) 配置按照最长匹配选择RPF路由。
longest-match
缺省情况下,选择路由优先级最高的路由作为RPF路由。
用户通过配置根据组播源或组播源组进行IPv6组播流量的负载分担,可以优化存在多条IPv6组播数据流时的网络流量。
(1) 进入系统视图。
system-view
(2) 进入IPv6 MRIB视图。
ipv6 multicast routing [ vpn-instance vpn-instance-name ]
(3) 配置对IPv6组播流量进行负载分担。
load-splitting { source | source-group }
缺省情况下,不对IPv6组播流量进行负载分担。
IPv6组播信息在网络中的转发并不是漫无边际的,每个IPv6组播组对应的IPv6组播信息都必须在确定的范围内传递。IPv6组播转发边界可以限制IPv6组播协议报文的收发,为指定范围或Scope值的IPv6组播组划定了边界条件。如果IPv6组播报文的目的地址与边界条件匹配,就停止转发。当在一个接口上配置了IPv6组播转发边界后,将不能从该接口转发IPv6组播报文(包括本机发出的IPv6组播报文),并丢弃该接口接收到的IPv6组播报文。
本配置不需要使能IPv6组播路由。
(1) 进入系统视图。
system-view
(2) 进入接口视图。
interface interface-type interface-number
(3) 配置IPv6组播转发边界。
ipv6 multicast boundary { ipv6-group-address prefix-length | scope { scope-id | admin-local | global | organization-local | site-local } }
缺省情况下,接口上未配置任何IPv6组播组的转发边界。
建立IPv6组播转发表项需要一定时间,在这段时间内设备若收到(S,G)表项的IPv6组播数据报文,可以缓存该报文。如果需要缓存多个未知IPv6组播数据报文,可以通过本配置来设置对于同一个(S,G)表项,可缓存的最大未知IPv6组播数据报文数目。通过本配置还可以设置内存中缓存的未知IPv6组播数据报文的总数。
建议配置ipv6 multicast forwarding-table cache-unknown total的值要远远大于ipv6 multicast forwarding-table cache-unknown per-entry配置的值。
(1) 进入系统视图。
system-view
(2) 设置对于同一个(S,G)表项,可缓存的最大未知IPv6组播数据报文数目。
ipv6 multicast forwarding-table cache-unknown per-entry per-entry-limit
缺省情况下,对于同一个(S,G)表项,可缓存的最大未知IPv6组播数据报文数目为1。
(3) 设置内存中缓存的未知IPv6组播数据报文的总数。
ipv6 multicast forwarding-table cache-unknown total total-limit
缺省情况下,内存中缓存的未知IPv6组播数据报文的总数量为1024。
配置跨VPN的IPv6组播转发路由的RPF选路策略,可以实现组播源和组播接收者位于不同的VPN网络之间的组播转发。
源VPN和接收者VPN必须运行相同的PIM模式,目前支持PIM-SM和PIM-SSM。
只支持一次跨VPN组播转发,接收VPN不能同时作为源VPN。
采用PIM-SM方式,对于同一个组播组地址,只能配置一条指定VPN实例的组播路由的RPF选路策略。
如果在接收者VPN中配置了跨VPN的IPv4组播路由的RPF选路策略,且该策略只指定了组播组地址,那么该VPN原先相同的VPN实例的组播流量转发将中断。
如果在RPF选路策略中指定了组播源,则需同时配置两条RPF选路策略:
· 如果未指定组播组,那么其中一条是以服务于有跨VPN需求的组播组的RP地址作为源地址,另一条是源VPN里的组播源作为源地址。
· 如果指定了组播组,那么其中一条是以服务于有跨VPN需求的组播组的RP地址作为源地址,有跨VPN需求的组播组作为组地址;另一条是源VPN里的组播源作为源地址,有跨VPN需求的组播组作为组地址。且此时两条策略中的组播组地址必须完全相同。否则不能实现跨VPN转发。
普通三层组播同时支持源PE方案和接收者PE方案。
在源PE配置方案中,若采用PIM-SM模式,则接收者所在VPN的RP必须配在组播源侧设备上与接收者所在VPN相同的VPN内。
(1) 进入系统视图。
system-view
(2) 进入IPv6 MRIB实例视图。
ipv6 multicast routing [ vpn-instance vpn-instance-name ]
(3) 跨VPN的IPv6组播路由的RPF选路策略。
ipv6 multicast extranet select-rpf { vpn-instance vpn-instance-name } { source ipv6-source-address prefix-length | group ipv6-group-address prefix-length }*
缺省情况下,没有配置IPv6跨VPN组播路由的RPF选路策略。
执行reset命令清除IPv6组播路由表或IPv6组播转发表中的信息,可能导致IPv6组播信息无法正常传输。
在完成上述配置后,在任意视图下执行display命令可以显示配置后IPv6组播路由与转发的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除IPv6组播路由与转发的统计信息。
表1-1 IPv6组播路由与转发显示和维护
操作 |
命令 |
显示IPv6 MRIB维护的接口信息 |
display ipv6 mrib [ vpn-instance vpn-instance-name ] interface [ interface-type interface-number ] |
显示IPv6组播边界的信息 |
display ipv6 multicast [ vpn-instance vpn-instance-name ] boundary { group [ ipv6-group-address [ prefix-length ] ] | scope [ scope-id ] } [ interface interface-type interface-number ] |
显示IPv6组播快速转发表项信息 |
display ipv6 multicast [ vpn-instance vpn-instance-name ] fast-forwarding cache [ ipv6-source-address | ipv6-group-address ] * [ chassis chassis-number slot slot-number ] |
显示IPv6组播转发的事件统计信息 |
display ipv6 multicast [ vpn-instance vpn-instance-name ] forwarding event [ chassis chassis-number slot slot-number ] |
显示IPv6组播转发表的信息 |
display ipv6 multicast [ vpn-instance vpn-instance-name ] forwarding-table [ ipv6-source-address [ prefix-length ] | ipv6-group-address [ prefix-length ] | chassis chassis-number slot slot-number | incoming-interface interface-type interface-number | outgoing-interface { exclude | include | match } interface-type interface-number | statistics ] * |
显示IPv6组播路由表的信息 |
display ipv6 multicast [ vpn-instance vpn-instance-name ] routing-table [ ipv6-source-address [ prefix-length ] | ipv6-group-address [ prefix-length ] | incoming-interface interface-type interface-number | outgoing-interface { exclude | include | match } interface-type interface-number ] * |
显示IPv6组播源的RPF信息 |
display ipv6 multicast [ vpn-instance vpn-instance-name ] rpf-info ipv6-source-address [ ipv6-group-address ] |
清除IPv6组播快速转发表中的转发项 |
reset ipv6 multicast [ vpn-instance vpn-instance-name ] fast-forwarding cache { { ipv6-source-address | ipv6-group-address } * | all } [ chassis chassis-number slot slot-number ] |
清除IPv6组播转发的事件统计信息 |
reset ipv6 multicast [ vpn-instance vpn-instance-name ] forwarding event |
清除IPv6组播转发表中的转发项 |
reset ipv6 multicast [ vpn-instance vpn-instance-name ] forwarding-table { { ipv6-source-address [ prefix-length ] | ipv6-group-address [ prefix-length ] | incoming-interface { interface-type interface-number } } * | all } |
清除IPv6组播路由表中的路由项 |
reset ipv6 multicast [ vpn-instance vpn-instance-name ] routing-table { { ipv6-source-address [ prefix-length ] | ipv6-group-address [ prefix-length ] | incoming-interface interface-type interface-number } * | all } |
· 清除IPv6组播路由表中的路由项后,IPv6组播转发表中的相应表项也将随之删除。
· 清除IPv6组播转发表中的转发项后,IPv6组播路由表中的相应表项也将随之删除。
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!