02-以太网接口配置
本章节下载: 02-以太网接口配置 (462.82 KB)
目 录
本系列交换机支持的接口类型包括:以太网接口,管理用以太网口,Console口等。
设备上支持的以太网接口有以下几种:
· 二层以太网接口:是一种工作在数据链路层的物理接口,可以对接收到的报文进行二层交换转发。
· 三层以太网接口:是一种工作在网络层的物理接口,可以配置IP地址,可以对接收到的报文进行三层路由转发。
· 二、三层可切换以太网接口:是一种物理接口,可以工作在二层模式或三层模式下,作为一个二层以太网接口或三层以太网接口使用。
· 三层以太网子接口:是一种逻辑接口,工作在网络层,可以配置IP地址,处理三层协议。用户可以在一个以太网接口上配置多个子接口。
本章节主要介绍有关管理用以太网口和以太网接口的相关配置及命令。
该端口采用RJ-45/LC连接器,一般用来连接后台计算机以进行系统的程序加载、调试等工作,也可以连接远端的网管工作站等设备以实现系统的远程管理。
管理以太网口分为电口和光口,其中:
· 电口的缺省双工模式为auto(自协商),光口的缺省双工模式为full(全双工),均不支持通过duplex命令配置为其他值。
· 电口的缺省速率为auto(自协商),光口的缺省速率为1000Mbps,均不支持通过speed命令配置为其他值。
系统中存在多个管理以太网接口时,只有主用主控板上的管理以太网接口工作。(独立运行模式)
系统中存在多个管理以太网接口时,只有全局主用主控板上的管理以太网接口工作。(IRF模式)
表1-1 以太网接口基本配置
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入管理用以太网口视图 |
interface m-gigabitethernet interface-number |
- |
(可选)设置当前管理用以太网口的描述信息 |
description text |
缺省情况下,管理用以太网口的描述信息为M-GigabitEthernet0/0/0 Interface |
(可选)关闭管理用以太网口 |
shutdown |
缺省情况下,管理用以太网口处于打开状态 |
当设备工作在独立运行模式时,以太网接口采用3维编号方式:interface-type A/B/C。
· A:单板在设备上的槽位号。
· B:单板上的子卡号。暂不支持子卡,取值固定为0。
· C:端口编号。
当设备工作在IRF模式时,以太网接口采用4维编号方式:interface-type A/B/C/D。
· A:设备在IRF中的成员编号,取值为1 或2。
· B:单板在设备上的槽位号。
· C:单板上的子卡号。暂不支持子卡,取值固定为0。
· D:端口编号。
该部分介绍了二层以太网接口和三层以太网接口/子接口的共有属性及其配置,各自的特有属性请参见下文中“1.5 二层以太网接口的配置”和“1.6 三层以太网接口/子接口的配置”。
100GE接口可以作为一个单独的接口使用,也可以被拆分为多个10GE接口使用,从而能够提高端口密度,减少用户使用成本,增加组网灵活性。拆分出来的10GE接口除了接口编号方式外,支持的配置和特性均和普通10GE物理接口相同。例如,100GE接口HundredGigE1/0/1在安装支持拆分的40GE光模块或电缆时,可以拆分成四个10GE接口Ten-GigabitEthernet1/0/1:1~Ten-GigabitEthernet1/0/1:4。
如果用户需要更大的带宽,可以将100GE接口拆分出来的4个10GE接口合并为一个100GE接口使用。在任何一个10GE拆分接口下执行该命令均生效,无需在其它拆分接口上配置。
只有以下接口板的指定端口支持该特性:
· LSUM1CGS8SH3接口板的前7个100GE端口
只有缺省MDC上支持配置该特性,非缺省MDC上不支持。
100GE接口拆分后需要使用专用线缆连接;合并后需要使用一对一的专用线缆或者100GE光模块和光纤连接。关于线缆和光模块的具体描述请参见产品的相关手册。
配置本功能后,需要重启业务板才能生效。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入100GE以太网接口视图 |
interface hundredgige interface-number |
- |
一个100GE接口拆分成多个10GE接口 |
using tengige |
缺省情况下,100GE接口作为单个接口使用,未拆分 |
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入任意一个因拆分生成的10GE接口视图 |
interface ten-gigabitethernet interface-number |
- |
将多个10GE拆分接口合并成一个100GE接口 |
using hundredgige |
缺省情况下,100GE接口作为单个接口使用,未拆分 |
100GE接口可以作为一个单独的接口使用,也可以根据接口芯片规格拆分为四个25GE接口使用,从而能够提高端口密度,减少用户使用成本,增加组网灵活性。拆分出来的25GE接口除了接口编号方式外,支持的配置和特性均和普通25GE物理接口相同。例如,100GE接口HundredGigE1/0/1可以拆分成四个25GE接口Twenty-FiveGigE1/0/1:1~Twenty-FiveGigE1/0/1:4。
如果用户需要更大的带宽,可以将已拆分的25GE接口合并为100GE接口使用。
只有以下接口板的指定端口支持该特性:
· LSUM1CGS8SH3接口板的前7个100GE端口
只有缺省MDC上支持配置该特性,非缺省MDC上不支持。
100GE接口拆分后需要使用一分四的专用线缆连接;合并后需要使用一对一的专用线缆或者100GE光模块和光纤连接。关于线缆和光模块的具体描述请参见产品的相关手册。
配置本功能后,需要重启业务板才能生效。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入100GE以太网接口视图 |
interface hundredgige interface-number |
- |
一个100GE接口拆分成四个25GE接口 |
using twenty-fivegige |
缺省情况下,100GE的接口单独使用,未拆分 |
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入任意一个因拆分生成的25GE接口视图 |
interface twenty-fivegige interface-number |
- |
将四个25GE拆分接口合并成一个100GE接口 |
using hundredgige |
缺省情况下,100GE的接口单独使用,未拆分 |
设置以太网接口的双工模式时存在以下几种情况:
· 当希望接口在发送数据包的同时可以接收数据包,可以将接口设置为全双工(full)属性;
· 当希望接口同一时刻只能发送数据包或接收数据包时,可以将接口设置为半双工(half)属性;
· 当设置接口为自协商(auto)状态时,接口的双工状态由本接口和对端接口自动协商而定。
设置以太网接口的速率时,当设置接口速率为自协商(auto)状态时,接口的速率由本接口和对端接口双方自动协商而定。
OAP单板的内联接口不支持配置双工模式和速率。关于OAP单板的内联接口的介绍,请参见“OAA”中的“OAP单板”。
以下接口板上的接口和安装了电口光模块的接口,不支持同时配置10M速率和半双工模式:
· FD系列接口板
· SC系列接口板
· FC系列接口板
以下接口板的指定10GE端口安装1G光模块时,请设置本端和对端的双工模式为full,接口速率为1000:
· 下列FD系列接口板:LSUM1TGS24FD3(17~24号端口)、LSUM1TGS16FD3(9~16号端口)
· LSUM1TGS48SH3接口板(所有10GE端口)
表1-2 以太网接口基本配置
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
设置当前接口的描述信息 |
description text |
缺省情况下,接口的描述信息为“接口名 Interface” |
设置以太网接口的双工模式 |
duplex { auto | full | half } |
光口不支持配置half参数 缺省情况下,以太网接口的双工模式为auto(自协商)状态 需要注意的是: · 对于同一物理链路两端的以太网接口,双工模式需要配置成一致,否则接口可能不能正常工作 · 速率为1000Mbps及以上的接口不支持配置或自协商成半双工模式 |
设置以太网接口的速率 |
speed { 10 | 100 | 1000 | 2500 | 5000 | 10000 | 25000 | 40000 | 100000 | auto } |
缺省情况下,以太网接口的速率为auto(自协商)状态 不同类型的接口支持配置的参数不同,具体情况请在相关接口视图下执行speed ?命令查看 需要注意的是: · 对于同一物理链路两端的以太网接口,接口速率需要配置成一致,否则接口可能不能正常工作 · 速率为10Gbps及以上的光口不支持配置或自协商成100Mbps及以下速率 |
配置接口的期望带宽 |
bandwidth bandwidth-value |
缺省情况下,接口的期望带宽=接口的波特率÷1000(kbps) |
恢复接口的缺省配置 |
default |
- |
打开以太网接口 |
undo shutdown |
shutdown、port up-mode和loopback命令互斥,后配置的失败 |
使用以太网子接口,需要注意的是:
· 本端设备以太网子接口号、关联的VLAN ID需要分别和相连的对端设备的以太网子接口号、关联的VLAN ID一致,否则报文将不能正确传输。
· 以太网子接口需要收发携带子接口编号的VLAN Tag的报文,请不要把该VLAN作为普通VLAN使用。
· 配置子接口时,子接口的编号不能和interface vlan-interface命令配置的VLAN接口编号相同,有关interface vlan-interface命令的详细介绍,请参见“二层技术-以太网交换命令参考”中的“VLAN”。
表1-3 以太网子接口基本配置
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
创建以太网子接口,并进入以太网子接口视图 |
interface interface-type interface-number.subnumber |
- |
设置以太网子接口的描述字符串 |
description text |
缺省情况下,描述字符串为“该接口的接口名 Interface” |
恢复接口的缺省配置 |
default |
- |
配置接口的期望带宽 |
bandwidth bandwidth-value |
缺省情况下,接口的期望带宽=接口的波特率÷1000(kbps) |
打开以太网子接口 |
undo shutdown |
缺省情况下,以太网接口处于开启状态 在进行环回测试时,禁止在接口上配置shutdown命令 |
工作模式切换后,除了shutdown命令,该以太网接口下的其它所有命令都将恢复到新模式下的缺省情况。
本系列交换机上的接口比较灵活,以太网接口可工作在二层模式(bridge)或三层模式(route)。
· 如果将工作模式设置为二层模式(bridge),则作为一个二层以太网接口使用。
· 如果将工作模式设置为三层模式(route),则作为一个三层以太网接口使用。
不支持切换工作模式的以太网接口包括:IRF物理端口、远程源镜像组的反射端口和使能了EVB的端口。关于IRF物理端口的介绍,请参见“虚拟化技术”中的“IRF”。关于反射端口的介绍,请参见“网络管理和监控配置指导”中的“镜像”。关于EVB的介绍,请参见“EVB配置指导”中的“EVB”。
表1-4 配置以太网接口的工作模式
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
切换以太网接口工作模式 |
port link-mode { bridge | route } |
以太网接口在进行文件传输等大吞吐量数据交换的时候,可能会收到大于标准以太网帧长的帧,这种帧称为超长帧。系统对于超长帧的处理如下:
· 如果系统配置了禁止超长帧通过(通过undo jumboframe enable命令配置),会直接丢弃该帧不再进行处理。
· 如果系统允许超长帧通过,当接口收到长度在指定范围内的超长帧时,系统会继续处理;当接口收到长度超过指定最大长度的超长帧时,系统会直接丢弃该帧不再进行处理。
表1-5 配置允许超长帧通过以太网接口
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
允许超长帧通过 |
jumboframe enable [ size ] |
缺省情况下,设备允许长度为9216字节的超长帧通过 多次执行该命令配置不同的size值时,则最新的配置生效 |
以太网接口有两种物理连接状态:up和down。当接口状态发生改变时,接口会立即上报CPU,CPU会立即通知上层协议模块(例如路由、转发)以便指导报文的收发,并自动生成Trap和Log信息,来提醒用户是否需要对物理链路进行相应处理。
如果短时间内接口物理状态频繁改变,上述处理方式会给系统带来额外的开销。此时,可以在接口下设置物理连接状态抑制功能,使得在抑制时间内,系统忽略接口的物理状态变化;经过抑制时间后,如果状态还没有恢复,再上报CPU进行处理。
对于开启了生成树协议、RRPP或Smart Link的端口不推荐使用该功能。
以太网接口上不能同时配置本功能、dampening命令和port link-flap protect enable命令。
同一接口下,接口状态从up变成down的抑制时间和接口状态从down变成up的抑制时间可以不同。在同一接口下,多次配置本功能:
· 可以分别配置抑制上报down状态和抑制上报up状态。
· 当配置的是同一状态的抑制时间时,则最新的配置生效。
表1-6 设置以太网接口物理连接状态抑制功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
配置以太网接口物理连接状态抑制功能 |
link-delay { down | up } [ msec ] delay-time |
缺省情况下,系统会将接口状态改变立即上报CPU,即不进行抑制 |
由于线缆故障、接口连接或链路层配置错误等问题,可能会导致设备接口的状态频繁的在down和up之间切换,这种现象称为接口震荡。随着接口状态的频繁改变,设备会不停的刷新相关表项(比如路由表),消耗大量的系统资源。通过在接口上配置dampening功能,可以在一定条件下,屏蔽该接口的震荡对路由等上层业务的影响。此时若出现接口震荡,将不上送CPU处理,仅产生对应的Trap和Log信息,从而节省系统资源的消耗。
dampening功能中各参数解释如下:
· 惩罚值(Penalty):配置dampening功能后,接口对应一个惩罚值,初始值为0。接口状态从up变到down时,惩罚值会增加1000;接口状态从down变到up时,惩罚值不变。同时,惩罚值随时间推移自动减少,满足半衰期衰减规律:完全衰减时(假如没有接口震荡),经过一个半衰周期,惩罚值减少为原来值的一半。
· 最大惩罚值(Ceiling):当惩罚值达到此值后,惩罚值将不再增加。每次接口进入抑制状态后,持续抑制的时间超过最大抑制时间时,惩罚值不再增加,此时惩罚值进入完全半衰期(此阶段接口状态变化不会增加惩罚值),直到惩罚值小于启用值,不再抑制接口(完全半衰时,接口仍然处于抑制状态,但完全半衰阶段时间不算入持续抑制时间)。
· 抑制值(Suppress-limit):当惩罚值大于或等于这个门限时,抑制接口,即当接口状态变化时,不上送CPU处理,仅产生对应的Trap和Log信息。
· 启用值(Reuse-limit):当惩罚值小于或等于这个门限时,不抑制接口,即当接口状态变化时,上送CPU处理,同时产生对应的Trap和Log信息。
· 半衰期(Decay):此阶段惩罚值随着时间的推移自动的减少,满足半衰期衰减规律,即经过一个半衰周期,惩罚值减半。
· 最大抑制时间(Max-suppress-time):如果接口一直不稳定,网络设备不能一直抑制它,必须要设定一个最大的抑制时间。最大抑制时间后,惩罚值进入完全半衰期。
其中,抑制值、最大惩罚值、最大抑制时间、半衰期、启用值之间应满足以下关系,配置命令行时请根据该关系来选择参数的取值:
· 最大惩罚值=2(最大抑制时间/半衰期)×启用值,其中最大惩罚值不可配。
· 抑制值的配置值≤最大惩罚值≤抑制值可配的最大值。
惩罚值的变化规律如下图所示。
图1-1 dampening惩罚值变化规律图
图1-1中,t0为抑制开始时间,从t0开始经过最大抑制时间后达到t1,t2为抑制结束时间。t0至t2段对应接口抑制期,t0至t1段对应最大抑制时间,t1至t2段对应完全半衰期(此阶段惩罚值不再增加)。
以太网接口上不能同时配置本功能、link-delay命令和port link-flap protect enable命令。
本功能对使用shutdown命令手动关闭的接口无效。
手工shutdown接口时,dampening的惩罚值恢复为初始值0。
对于开启了RRPP、MSTP或Smart Link的接口不建议配置该功能。
表1-7 配置以太网接口dampening功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
开启接口的dampening功能 |
dampening [ half-life reuse suppress max-suppress-time ] |
缺省情况下,接口的dampening功能处于关闭状态 |
链路震荡即接口的物理状态频繁变化时,会导致网络拓扑结构不断变化,给系统带来额外的开销。例如,在主备链路场景中,当主链路的接口物理状态频繁UP/DOWN时,业务将在主备链路之间来回切换,增加了设备的负担。为了解决该问题,设备提供了链路震荡保护功能。
配置本功能后,当接口状态从UP变为DOWN时,系统会启动链路震荡检查。在链路震荡检查时间间隔内,如果该接口状态从UP变为DOWN的次数大于等于链路震荡次数阀值,则关闭该接口。
只有系统视图下和接口视图下同时开启链路震荡保护功能后,接口的链路震荡保护功能才能生效。
为了避免IRF物理链路震荡影响IRF系统稳定性,IRF物理端口缺省开启本功能且开启状态不受全局链路震荡保护功能开启状态影响。当IRF物理链路在检查时间间隔内震荡次数超过阈值,设备将打印日志信息,但不会关闭IRF物理端口。
以太网接口上不能同时配置dampening命令、link-delay命令和port link-flap protect enable命令。
接口因链路频繁震荡被关闭后,不会自动恢复,需要用户执行undo shutdown命令手工恢复。
使用display interface命令显示接口信息时,如果Current state字段的取值为Link-Flap DOWN,则表示该接口因链路频繁震荡被关闭了。
表1-8 配置以太网接口的链路震荡保护功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
开启全局链路震荡保护功能 |
link-flap protect enable |
缺省情况下,链路震荡功能处于关闭状态 |
以太网接口视图 |
interface interface-type interface-number |
- |
开启接口链路震荡保护功能 |
port link-flap protect enable [ interval interval | threshold threshold ] * |
缺省情况下,链路震荡功能处于关闭状态 |
FEC(Forward Error Correction,前向纠错)用于报文纠错,它通过在发送端为数据报文附加纠错信息,在接收端利用纠错信息来纠正数据报文在传输时产生的错误码,以提高传输质量。用户需要根据实际情况来选择FEC模式。
仅25GE和100GE接口支持配置本功能。
25GE接口的速率被协商或配置为1000Mbps、10000Mbps时,该接口上的FEC功能不生效。
100GE接口使用电缆连接或安装40G光模块时,不支持FEC功能,如果已配置FEC功能,请通过undo port fec mode命令恢复缺省情况。
配置接口的FEC模式为自协商(auto)模式后,实际FEC模式会根据插入光口的光模块型号发生变化,可通过display interface命令中的FEC mode字段查看。
用户需要保证链路两端使用的FEC模式一致。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
配置接口的FEC模式 |
port fec mode { auto | base-r | none | rs-fec } |
缺省情况下,25GE接口处于RS-FEC模式;100GE接口处于FEC自协商(auto)模式 100GE接口下不支持配置base-r参数 |
随着信号传输速率/频率的增加,信号中高频分量的衰减也越加严重,为了保障信号的传输性能,需要对信号进行补偿,常用的补偿技术有预加重技术和均衡技术。预加重技术通过在发送端增强信号的高频分量,以补偿高频分量在传输过程中的衰减。预加重技术将高频分量放大的同时,也增大了串扰的概率,由此出现了均衡技术。均衡技术在接收端使用,相当于一个滤波器,用于滤除高频串扰。
接口开启链路补偿功能后,发送端和接收端将通过帧来交互预加重和均衡参数,提高预加重和均衡技术的处理效率。
仅25G以太网接口使用电缆连接时支持配置本功能。
为了确保接口可以正常工作,链路两端的接口必须同时开启或关闭链路补偿功能。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
配置接口的链路补偿功能 |
port training { disable | enable } |
缺省情况下,接口的链路补偿功能处于开启状态 |
该功能用于检测以太网转发通路能否正常工作。环回功能包括内部环回和外部环回:
· 内部环回:配置内部环回后,接口将需要从接口转发出去的报文返回给设备内部,让报文向内部线路环回。内部环回用于定位设备是否故障。
· 外部环回:配置外部环回后,接口将来自对端设备的报文返回给对端设备,让报文向外部线路环回。外部环回用于定位设备间链路是否故障。
开启环回功能后,接口将不能正常转发数据包,请按需配置。
shutdown、port up-mode和loopback命令互斥,后配置的失败。
请不要在端口上同时配置环回功能和如下任一功能,否则将导致该功能异常(要使功能恢复正常,需使用undo命令在端口上取消环回功能和该功能,再重新配置该功能):
使能端口的Voice VLAN功能(相关命令为voice-vlan vlan-id enable)
配置接口的MAC地址数学习上限(相关命令为mac-address max-mac-count count)
· 关闭接口的MAC地址学习功能(相关命令为undo mac-address mac-learning enable)
· 开启端口MAC地址认证(相关命令为mac-authentication)
此功能仅供专业技术人员调试和定位问题使用,不推荐用户使用。
表1-9 开启以太网接口的环回功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
开启以太网接口的环回功能 |
loopback { external | internal } |
需要注意的是,暂不支持external参数 |
以太网接口流量控制功能的基本原理是:如果本端设备发生拥塞,将通知对端设备暂时停止发送报文;对端设备收到该消息后将暂时停止向本端发送报文;反之亦然。从而避免了报文丢失现象的发生。
· 配置flow-control命令后,设备具有发送和接收流量控制报文的能力:
¡ 当本端发生拥塞时,设备会向对端发送流量控制报文。
¡ 当本端收到对端的流量控制报文后,会停止报文发送。
· 配置flow-control receive enable命令后,设备具有接收流量控制报文的能力,但不具有发送流量控制报文的能力。
¡ 当本端收到对端的流量控制报文,会停止向对端发送报文。
¡ 当本端发生拥塞时,设备不能向对端发送流量控制报文。
因此,如果要应对单向网络拥塞的情况,可以在一端配置flow-control receive enable,在对端配置flow-control;如果要求本端和对端网络拥塞都能处理,则两端都必须配置flow-control。
以下接口板的部分10GE接口,接口速率设置为1000时,不支持本功能,系统将提示用户不支持配置:
· 下列FD系列接口板:LSUM1TGS24FD3、LSUM1TGS16FD3
对于LSUM1TGS48SH3接口板的10GE接口,接口速率设置为1000时,不支持本功能,系统将提示用户不支持配置。
表1-10 开启以太网接口的流量控制功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
开启以太网接口的流量控制功能 |
flow-control |
二者选其一 缺省情况下,以太网接口的流量控制功能处于关闭状态 · 对于配置或自协商成半双工模式的接口不支持本功能 · 开启或关闭流量控制功能可能会使接口产生down/up状态切换 |
配置以太网接口的接收流量控制功能 |
flow-control receive enable |
如果本端和对端设备的PFC(Priority-based Flow Control,基于优先级的流量控制)功能处于开启状态,并配置了priority-flow-control no-drop dot1p dot1p-list命令,则当本端收到的802.1p优先级在dot1p-list范围内的报文发生拥塞时,会通知对端设备暂时停止向本端发送对应优先级的报文;拥塞解除后,再通知对端继续发送对应优先级的报文。从而保证本设备在转发802.1p优先级在dot1p-list范围内的报文时不丢包。
PFC功能的状态由本端和对端设备的配置共同决定,如表1-11所示,第一行表示本端的PFC配置,第一列表示对端的PFC配置,开启和关闭表示协商结果。请在报文流经的所有端口上都进行相同的PFC功能配置。
表1-11 PFC配置和协商结果描述表
本端配置(右) 对端配置(下) |
enable |
auto |
缺省情况 |
enable |
开启 |
开启 |
关闭 |
auto |
开启 |
· 协商成功,则为开启 · 协商失败,则为关闭 |
关闭 |
缺省情况 |
关闭 |
关闭 |
关闭 |
用户可以在系统视图和接口视图下配置以太网接口PFC功能,多次在系统视图和接口视图下配置PFC功能,最后一次配置生效。
仅以下接口板支持PFC功能:
· SH系列接口板
· FC系列/FD系列/FE系列/SF系列/SG系列接口板
· SC系列接口板
以下接口板的部分10GE接口,接口速率设置为1000时,不支持本功能,系统将提示用户不支持配置:
· 下列FD系列接口板:LSUM1TGS24FD3、LSUM1TGS16FD3
对于LSUM1TGS48SH3接口板的10GE接口,接口速率设置为1000时,不支持本功能,系统将提示用户不支持配置。
如果设备处于IRF模式时,IRF物理端口也需要开启PFC功能,此时请先开启IRF物理端口视图下的PFC功能,再开启系统视图下的PFC功能。IRF相关内容的详细介绍,请参见“虚拟化技术配置指导”中的“IRF”。
不建议在802.1p优先级为0,6或7时配置PFC功能,以免影响设备IRF功能及其它协议正常运行。
为了避免报文在传输过程中因拥塞而发生丢包,请在报文流经的所有端口上都进行相同的PFC功能配置。
无论端口是否配置PFC功能,端口都可以接收PFC pause帧。但只有PFC功能处于enabled状态时,才对收到的PFC pause进行处理。所以,必须保证本端和对端的PFC功能都处于enabled状态,PFC功能才能生效。
PFC功能和flow-control流量控制功能之间配置相互影响,具体情况如表1-12所示。
表1-12 PFC功能和flow-control流量控制功能之间配置限制
flow-control |
priority-flow-control enable |
priority-flow-control no-drop dot1p |
说明 |
不可配置 |
完成配置 |
完成配置 |
当在端口上使能了PFC功能,且对指定的802.1p优先级也开启了PFC功能后,将无法配置该端口的flow-control流量控制功能 |
完成配置 |
可配置 |
不可配置 |
当先配置了该端口的flow-control流量控制功能后,此时虽然能够使能PFC功能,但无法对指定的802.1p优先级开启PFC功能 |
表1-13 配置内联接口的PFC功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
开启内联接口的PFC功能 |
priority-flow-control inner-port enable |
缺省情况下,内联接口的PFC功能处于关闭状态 内联接口是指设备网板和业务板间进行通信的接口,用户不可见 |
开启内联接口的指定802.1p优先级的PFC功能 |
priority-flow-control inner-port no-drop dot1p dot1p-list |
缺省情况下,内联接口的802.1p优先级的PFC功能处于关闭状态 |
表1-14 在系统视图下配置以太网接口的PFC功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
开启所有以太网接口的PFC功能 |
priority-flow-control { auto | enable [ receive | send ] } |
缺省情况下,所有以太网接口的PFC功能处于关闭状态。 |
开启所有以太网接口的指定802.1p优先级的PFC功能 |
priority-flow-control no-drop dot1p dot1p-list |
缺省情况下,所有以太网接口的802.1p优先级的PFC功能都处于关闭状态。 |
表1-15 在接口视图下配置以太网接口的PFC功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
配置PFC功能的开启模式 |
priority-flow-control { auto | enable [ receive | send ] } |
缺省情况下,PFC功能处于关闭状态 |
开启指定802.1p优先级的PFC功能 |
priority-flow-control no-drop dot1p dot1p-list+ |
缺省情况下,所有802.1p优先级的PFC功能都处于关闭状态 |
(可选)配置PFC PAUSE帧的暂停时间 |
priority-flow-control pause-time time-vale |
缺省情况下,PFC PAUSE帧的暂停时间为65535 |
· 802.1p优先级到本地优先级的映射关系使用qos map-table命令来配置。有关qos map-table命令的介绍,请参见“ACL和QoS配置指导”中的“QoS”。
· 开启某一802.1p优先级的PFC功能时,要求该802.1p优先级与本地优先级必须配置为默认映射关系,否则PFC功能无法正常工作。有关802.1p优先级与本地优先级默认映射关系的介绍,请参见“ACL和QoS配置指导”中的“QoS”。
接口开启EEE(Energy Efficient Ethernet,高效节能以太网)功能后,如果在连续一段时间(由芯片规格决定,不能通过命令行配置)内接口状态始终为up且没有收发任何报文,则接口自动进入低功耗模式;当接口需要收发报文时,接口又自动恢复到正常工作模式,从而达到节能的效果。
配置此功能时,需要注意:
· 仅以下接口板的电口支持本功能:
¡ 下列FD系列接口板:LSUM1GT48FD3
¡ 下列SC系列接口板:LSUM2GT24PTSSC3、LSUM2GT24TSSC3、LSQM2GT48SC3、LSQM4GV48SC3
· 使用本功能前必须先将端口的速率或双工模式的其中一个配置为auto,否则可能会导致本功能不能正常工作。
表1-16 开启EEE节能功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
开启EEE节能功能 |
eee enable |
缺省情况下,EEE节能功能处于关闭状态 |
使用本特性可以设置统计以太网接口报文信息的时间间隔。使用display interface命令可以显示端口在该间隔时间内统计的报文信息。使用reset counters interface命令可以清除端口的统计信息。
表1-17 在以太网接口视图下配置以太网接口统计信息的时间间隔
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
配置接口统计信息的时间间隔 |
flow-interval interval |
光口传输报文时要求插入两条光纤:一条用于接收报文,一条用于发送报文。只有两条光纤物理上均连通时,光口的物理状态才会变为up,才能传输报文。使用本特性强制开启光口后,不管实际的光纤链路是否连通,甚至没有插入光纤或光模块,光口的物理状态都会变为up。此时,只要光口上有一条光纤链路是连通的,就可以实现报文的单向转发,以达到节约传输链路的效果。如图1-2所示。
下列接口板上的接口不支持强制开启光口功能:
· LSUM2GP44TSSC3和LSUM2GT24PTSSC3单板上的接口编号为45~48的接口
· LSUM2GP24TSSC3和LSUM2GT24TSSC3单板上的接口编号为25~28的接口
对于同一物理链路两端的光口,请同时配置本功能。
shutdown、port up-mode和loopback命令互斥,后配置的失败。
如果接口被关闭(包括手工关闭和被协议关闭),则不能配置本功能。
如果接口已经加入聚合组,则该接口不能配置本功能。
port up-mode和speed、duplex或port fec mode命令同时配置,以及光口被强制开启后拔插光纤/光模块都会使接口在DOWN/UP状态切换后再处于UP状态。
光口被强制开启后,如果GE光口插入光电转换模块、100/1000M光模块、100M光模块,则流量不能正常转发。必须取消强制开启光口配置,才能正常转发。
表1-18 强制开启光口
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
电口不支持该功能 |
强制开启光口 |
port up-mode |
缺省情况下,没有强制开启光口。光口的物理状态由光纤的物理状态决定 |
在接口上配置了广播/组播/未知单播风暴抑制功能后,当接口上的广播/组播/未知单播流量超过用户设置的抑制阈值时,系统会丢弃超出流量限制的报文,从而使接口的广播/组播/未知单播流量降低到限定范围内,保证网络业务的正常运行。
执行storm-constrain与broadcast-suppression、multicast-suppression、unicast-suppression命令都能开启端口的风暴抑制功能。storm-constrain命令通过软件对报文流量进行抑制,对设备性能有一定影响;broadcast-suppression、multicast-suppression、unicast-suppression通过芯片物理上对报文流量进行抑制,相对storm-constrain来说,对设备性能影响较小。对于某种类型的报文流量,请不要同时配置这两种方式,以免配置冲突,导致抑制效果不确定。storm-constrain命令的详细描述请参见“1.5.2 配置以太网接口流量阈值控制功能”。
风暴抑制阈值配置为pps时,如果配置值大于1.4881×接口实际速率,配置将会失败。speed命令和可插拔光模块会影响接口实际速率;例如,10GE光口安装1G光模块、设置速率为1000Mbps后,该接口支持的pps配置值上限为1488100。
表1-19 配置以太网接口的风暴抑制比
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
开启端口广播风暴抑制功能,并设置广播风暴抑制阈值 |
broadcast-suppression { ratio | pps max-pps | kbps max-kbps } |
缺省情况下,所有接口不对广播流量进行抑制 |
开启端口组播风暴抑制功能,并设置组播风暴抑制阈值 |
multicast-suppression { ratio | pps max-pps | kbps max-kbps } |
缺省情况下,所有接口不对组播流量进行抑制 |
开启端口未知单播风暴抑制功能,并设置未知单播风暴抑制阈值 |
unicast-suppression { ratio | pps max-pps | kbps max-kbps } |
缺省情况下,所有接口不对未知单播流量进行抑制 |
当风暴抑制阈值配置为pps或kbps时,设备可能会根据芯片支持的步长,将配置值转换成步长的倍数。所以,端口下配置的抑制阈值可能与实际生效抑制阈值不一致,请注意查看设备的提示信息。
端口流量阈值控制功能用于控制以太网上的报文风暴。启用该功能的端口会定时检测到达端口的未知单播报文流量、组播报文流量和广播报文流量。如果某类报文流量超过预先设置的上限阈值时,用户可以通过配置来决定是阻塞该端口还是关闭该端口,以及是否输出Log和Trap信息。
· 配置成block方式:当端口上未知单播、组播或广播报文中某类报文的流量大于其上限阈值时,端口将暂停转发该类报文(其它类型报文照常转发),端口处于阻塞状态,但仍会统计该类报文的流量。当该类报文的流量小于其下限阈值时,端口将自动恢复对此类报文的转发。
· 配置成shutdown方式:当端口上未知单播、组播或广播报文中某类报文的流量大于其上限阈值时,端口将被关闭,系统停止转发所有报文。当该类报文的流量小于其下限阈值时,端口状态不会自动恢复,此时可通过执行undo shutdown命令或取消端口上流量阈值的配置来恢复。
本特性实现中系统需要一个完整的周期(周期长度为seconds)来收集流量数据,下一个周期分析数据、采取相应的控制措施。因此,开启端口流量阈值控制功能后,如果某类报文流量超过预先设置的上限阈值,控制动作最短将在一个周期后执行,最长不会超过两个周期。
执行storm-constrain与broadcast-suppression、multicast-suppression、unicast-suppression命令都能开启端口的风暴抑制功能。storm-constrain命令通过软件对报文流量进行抑制,对设备性能有一定影响,broadcast-suppression、multicast-suppression、unicast-suppression通过芯片物理上对报文流量进行抑制,相对storm-constrain来说,对设备性能影响较小。对于某种类型的报文流量,请不要同时配置这两种方式,以免配置冲突,导致抑制效果不确定。broadcast-suppression、multicast-suppression、unicast-suppression命令的详细描述请参见“1.5.1 配置广播/组播/未知单播风暴抑制功能”。
表1-20 配置以太网接口流量阈值控制功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
(可选)配置端口流量统计时间间隔 |
storm-constrain interval interval |
缺省情况下,端口流量统计时间间隔为10秒 为了保持网络状态的稳定,建议设置的流量统计时间间隔不低于10秒 |
进入以太网接口视图 |
interface interface-type interface-number |
- |
开启端口流量阈值控制功能,并设置上限阈值与下限阈值 |
storm-constrain { broadcast | multicast | unicast } { pps | kbps | ratio } upperlimit lowerlimit |
缺省情况下,端口流量阈值控制功能处于关闭状态,即端口不进行流量阈值控制 |
配置端口流量大于上限阈值的控制动作 |
storm-constrain control { block | shutdown } |
缺省情况下,端口不进行流量阈值控制 |
配置端口流量从小于等于上限阈值到大于上限阈值或者从超上限回落到小于下限阈值时输出Log信息 |
storm-constrain enable log |
缺省情况下,端口流量从小于等于上限阈值到大于上限阈值或者从超上限回落到小于下限阈值时输出Log信息 |
配置端口流量从小于等于上限阈值到大于上限阈值或者从超上限回落到小于下限阈值时输出Trap信息 |
storm-constrain enable trap |
缺省情况下,端口流量从小于等于上限阈值到大于上限阈值或者从超上限回落到小于下限阈值时输出Trap信息 |
通常情况下,设备以太网接口速率是通过和对端自协商决定的。协商得到的速率可以是接口速率能力范围内的任意一个速率。通过配置自协商速率可以让以太网接口在能力范围内只协商部分速率,从而可以控制速率的协商。
图1-3 以太网接口自协商速率应用示意图
如图1-3所示,服务器群(Server 1、Server 2和Server 3)通过Device与外部网络相连,该服务器群中每台服务器的网卡速率均为1000Mbps,Device与外部网络相连接口Port D的速率也为1000Mbps。如果在Switch A上不指定自协商速率范围,则接口Port A、Port B和Port C与各服务器网卡进行速率协商的结果将均为1000Mbps,这样就可能造成出接口Port D的拥塞。在这种情况下,可通过将接口Port A、Port B和Port C的自协商速率范围分别设置为100Mbps,来避免出接口的拥塞。
如果多次使用speed、speed auto命令设置接口的速率,则最新配置生效。关于speed命令的详细介绍,请参见“1.4.3 以太网接口基本配置”。
仅千兆以太网电口支持本功能。
表1-21 设置以太网接口的自协商速率范围
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
设置以太网接口的自协商速率范围 |
speed auto { 10 | 100 | 1000 } * |
缺省情况下,未配置接口自协商速率 |
物理以太网接口由8个引脚组成。缺省情况下,每个引脚都有专门的作用,例如,使用引脚1和2接收信号,引脚3和6发送信号。为了配合以太网接口支持使用直通线缆和交叉线缆,设备实现了三种MDIX(Media-dependent Interface-crossover)模式:automdix、mdi和mdix。通过配置以太网接口的MDIX模式,可以改变引脚在通信中的作用:
· 当配置为mdix模式时,使用引脚1和2接收信号,使用引脚3和6发送信号;
· 当配置为mdi模式时,使用引脚1和2发送信号,使用引脚3和6接收信号;
· 当配置为automdix模式时,两端设备通过协商来决定引脚1和2是发送还是接收信号,引脚3和6是接收还是发送信号。
物理以太网接口的引脚4、5、7、8不受该特性限制。千兆速率及以上接口,引脚4、5、7、8用来收发信号。
只有将设备的发送引脚连接到对端的接收引脚后才能正常通信,所以MDIX模式需要和两种线缆配合使用。
· 通常情况下,建议用户使用automdix模式。只有当设备不能获取网线类型参数时,才需要将模式手工指定为mdi或mdix。
· 当使用直通线缆时,两端设备的MDIX模式配置不能相同。
· 当使用交叉线缆时,两端设备的MDIX模式配置必须相同或者至少有一端设置为automdix模式。
光口不支持本特性。
表1-22 配置以太网接口的MDIX模式
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
设置以太网接口的MDIX模式 |
mdix-mode { automdix | mdi | mdix } |
缺省情况下,以太网接口的MDIX模式为automdix |
通过以下配置任务,用户可以检测设备上以太网接口连接电缆的当前状况,系统将在5秒内返回检测结果。检测内容包括电缆的状态以及一些物理参数,同时可以检测出故障线缆的长度。
光口不支持本特性。
表1-23 检测以太网接口的连接电缆
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
对以太网接口连接电缆进行一次检测 |
virtual-cable-test |
在以太网接口上执行该操作会使得已经up的链路自动down、up一次 |
某端口收到数据报文后,会查找设备上的MAC地址表:
· 若MAC地址表中包含与该报文目的MAC地址对应的表项,但该表项中的转发出端口是接收该报文的端口,设备将直接丢弃该报文。若在该端口上使能了端口桥功能后,上述情况下的报文将不会直接被丢弃,而是通过该端口发送出去。
· 若MAC地址表中不包含与该报文目的MAC地址对应的表项,设备会将ARP报文从该端口之外的所有端口发送出去。若在该端口上使能了端口桥功能后,ARP报文会从所有端口发送出去。
表1-24 配置以太网接口桥功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
配置以太网接口桥功能 |
port bridge enable |
缺省情况下,以太网接口的桥功能处于关闭状态 |
修改以太网接口/子接口的MTU(Maximum Transmission Unit,最大传输单元)值,会影响IP报文的分片与重组。一般情况下,不需要改变MTU值。
表1-25 配置以太网接口/子接口的MTU
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入以太网接口/子接口视图 |
interface interface-type { interface-number | interface-number.subnumber } |
- |
设置MTU |
mtu size |
缺省情况下,接口的MTU为1500Bytes |
在完成上述配置后,在任意视图下执行display命令可以显示配置后接口的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除接口统计信息。
表1-26 以太网接口显示和维护
操作 |
命令 |
显示接口的流量统计信息 |
display counters { inbound | outbound } interface [ interface-type [ interface-number ] ] |
显示最近一个抽样间隔内处于up状态的接口的报文速率统计信息 |
display counters rate { inbound | outbound } interface [ interface-type [ interface-number ] ] |
显示接口的运行状态和相关信息 |
display interface [ interface-type [ interface-number | interface-number.subnumber ] ] [ brief [ description | down ] ] |
显示接口的状态和报文统计等信息 |
display interface link-info [ main ] |
显示除子接口以外的接口的运行状态和相关信息 |
display interface [ interface-type ] [ brief [ description | down ] ] main |
显示接口链路震荡保护功能的相关信息 |
display link-flap protection [ interface interface-type [ interface-number ] ] |
显示接口丢弃的报文的信息 |
display packet-drop { interface [ interface-type [ interface-number ] ] | summary } |
显示接口的PFC信息 |
display priority-flow-control interface [ interface-type [ interface-number ] ] |
显示接口流量控制信息 |
display storm-constrain [ broadcast | multicast | unicast ] [ interface interface-type interface-number ] |
显示以太网软件模块收发报文的统计信息(独立运行模式) |
display ethernet statistics slot slot-number |
显示以太网软件模块收发报文的统计信息(IRF模式) |
display ethernet statistics chassis chassis-number slot slot-number |
清除接口的统计信息 |
reset counters interface [ interface-type [ interface-number | interface-number.subnumber ] ] |
清除接口丢弃报文的统计信息 |
reset packet-drop interface [ interface-type [ interface-number ] ] |
清除以太网软件模块收发报文的统计信息(独立运行模式) |
reset ethernet statistics [ slot slot-number ] |
清除以太网软件模块收发报文的统计信息(IRF模式) |
reset ethernet statistics [ chassis chassis-number slot slot-number ] |
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!