13-隧道配置
本章节下载: 13-隧道配置 (471.45 KB)
目 录
· 作为过渡技术,实现IPv4和IPv6网络互通,如IPv6 over IPv4隧道技术。
· 创建VPN(Virtual Private Network,虚拟专用网络),如IPv4 over IPv4隧道、IPv4/IPv6 over IPv6隧道、GRE(Generic Routing Encapsulation,通用路由封装)、DVPN(Dynamic Virtual Private Network,动态虚拟专用网络)和IPsec隧道技术。
· 实现流量工程,避免由于负载不均衡导致网络拥塞,如MPLS TE(Multiprotocol Label Switching Traffic Engineering,多协议标记交换流量工程)。
本文只介绍IPv6 over IPv4隧道、IPv4 over IPv4隧道、IPv4 over IPv6隧道和IPv6 over IPv6隧道。如无特殊说明,下文中的隧道技术均指此类隧道。
如图1-1所示,IPv6 over IPv4隧道是在IPv6数据报文前封装上IPv4的报文头,通过隧道使IPv6报文穿越IPv4网络,实现隔离的IPv6网络互通。IPv6 over IPv4隧道两端的设备必须支持IPv4/IPv6双协议栈,即同时支持IPv4协议和IPv6协议。
图1-1 IPv6 over IPv4隧道原理图
IPv6 over IPv4隧道对报文的处理过程如下:
(1) IPv6网络中的主机发送IPv6报文,该报文到达隧道的源端设备Device A。
(2) Device A根据路由表判定该报文要通过隧道进行转发后,在IPv6报文前封装上IPv4的报文头,通过隧道的实际物理接口将报文转发出去。IPv4报文头中的源IP地址为隧道的源端地址,目的IP地址为隧道的目的端地址。
(3) 封装报文通过隧道到达隧道目的端设备(或称隧道终点)Device B,Device B判断该封装报文的目的地是本设备后,将对报文进行解封装。
(4) Device B根据解封装后的IPv6报文的目的地址处理该IPv6报文。如果目的地就是本设备,则将IPv6报文转给上层协议处理;否则,查找路由表转发该IPv6报文。
根据隧道终点的IPv4地址的获取方式不同,隧道分为“配置隧道”和“自动隧道”。
· 如果IPv6 over IPv4隧道终点的IPv4地址不能从IPv6报文的目的地址中自动获取,需要进行手工配置,这样的隧道称为“配置隧道”。
· 如果IPv6报文的目的地址中嵌入了IPv4地址,则可以从IPv6报文的目的地址中自动获取隧道终点的IPv4地址,这样的隧道称为“自动隧道”。
如表1-1所示,根据对IPv6报文的封装方式的不同,IPv6 over IPv4隧道分为以下几种模式。
隧道源端/目的端地址 |
IPv6报文目的地址格式 |
||
IPv6 over IPv4手动隧道 |
源端/目的端地址为手工配置的IPv4地址 |
普通的IPv6地址 |
|
6to4隧道 |
源端地址为手工配置的IPv4地址,目的端地址不需配置 |
6to4地址,其格式为: 2002:IPv4-destination-address::/48 其中,IPv4-destination-address表示隧道的目的端地址 |
|
ISATAP(Intra-Site Automatic Tunnel Addressing Protocol,站点内自动隧道寻址协议)隧道 |
源端地址为手工配置的IPv4地址,目的端地址不需配置 |
ISATAP地址,其格式为: Prefix:0:5EFE:IPv4-destination-address/64 其中,IPv4-destination-address表示隧道的目的端地址 |
IPv6 over IPv4手动隧道是点到点之间的链路。建立手动隧道需要在隧道两端手工指定隧道的源端和目的端地址。
手动隧道可以建立在连接IPv4网络和IPv6网络的两个边缘路由器之间,实现隔离的IPv6网络跨越IPv4网络通信;也可以建立在边缘路由器和IPv4/IPv6双栈主机之间,实现隔离的IPv6网络跨越IPv4网络与双栈主机通信。
(2) 6to4隧道
6to4隧道是点到多点的自动隧道,主要建立在边缘路由器之间,用于通过IPv4网络连接多个IPv6孤岛。
6to4隧道两端采用特殊的6to4地址,其格式为:2002:abcd:efgh:子网号::接口ID/48。其中:2002表示固定的IPv6地址前缀;abcd:efgh为用16进制表示的IPv4地址(如1.1.1.1可以表示为0101:0101),用来唯一标识一个6to4网络(如果IPv6孤岛中的主机都采用6to4地址,则该IPv6孤岛称为6to4网络),6to4网络的边缘路由器上连接IPv4网络的接口地址需要配置为此IPv4地址;子网号用来在6to4网络内划分子网;子网号和接口ID共同标识了一个主机在6to4网络内的位置。通过6to4地址中嵌入的IPv4地址可以自动确定隧道的终点,使隧道的建立非常方便。
ISATAP隧道是点到多点的自动隧道技术,为IPv6主机通过IPv4网络接入IPv6网络提供了一个较好的解决方案。
使用ISATAP隧道时,IPv6报文的目的地址要采用特殊的ISATAP地址。ISATAP地址格式为:Prefix:0:5EFE:abcd:efgh/64。其中,64位的Prefix为任何合法的IPv6单播地址前缀;abcd:efgh为用16进制表示的32位IPv4地址(如1.1.1.1可以表示为0101:0101),该IPv4地址不要求全球唯一。通过ISATAP地址中嵌入的IPv4地址可以自动确定隧道的终点,使隧道的建立非常方便。
ISATAP隧道主要用于跨越IPv4网络在IPv6主机与边缘路由器之间、两个边缘路由器之间建立连接。
图1-2 ISATAP隧道原理图
IPv4 over IPv4隧道(RFC 1853)是对IPv4报文进行封装,使得一个IPv4网络的报文能够在另一个IPv4网络中传输。例如,运行IPv4协议的两个子网位于不同的区域,并且这两个子网都使用私网地址时,可以通过建立IPv4 over IPv4隧道,实现两个子网的互联。
图1-3 IPv4 over IPv4隧道原理图
报文在隧道中传输经过封装与解封装两个过程,以上图为例说明这两个过程:
Device A连接IPv4主机所在子网的接口收到IPv4报文后,首先交由IPv4协议栈处理。IPv4协议栈根据IPv4报文头中的目的地址判断该报文需要通过隧道进行转发,则将此报文发给Tunnel接口。
Tunnel接口收到此报文后,在IPv4报文外再封装一个IPv4报文头,封装的报文头中源IPv4地址为隧道的源端地址,目的IPv4地址为隧道的目的端地址。封装完成后将报文重新交给IPv4协议栈处理,IPv4协议栈根据添加的IPv4报文头查找路由表,转发报文。
解封装过程和封装过程相反。Device B从接口收到IPv4报文后,将其送到IPv4协议栈处理。IPv4协议栈检查接收到的IPv4报文头中的协议号。如果协议号为4(表示封装的报文为IPv4报文),则将此IPv4报文发送到隧道模块进行解封装处理。解封装之后的IPv4报文将重新被送到IPv4协议栈进行二次路由处理。
随着IPv6网络的广泛部署,IPv6网络将逐渐取代IPv4网络,占据主导地位。尚未被IPv6网络取代的IPv4网络将形成孤岛,需要通过IPv6网络互通。IPv4 over IPv6隧道在IPv4报文上封装IPv6的报文头,通过隧道使IPv4报文穿越IPv6网络,从而实现通过IPv6网络连接隔离的IPv4网络孤岛。
图1-4 IPv4 over IPv6隧道原理图
IPv4报文在隧道中传输经过封装与解封装两个过程,以图1-4为例说明这两个过程:
Device A连接IPv4网络的接口收到IPv4报文后,首先交由IPv4协议栈处理。IPv4协议栈根据IPv4报文头中的目的地址判断该报文需要通过隧道进行转发,则将此报文发给Tunnel接口。
Tunnel接口收到此报文后添加IPv6报文头,IPv6报文头中源IPv6地址为隧道的源端地址,目的IPv6地址为隧道的目的端地址。封装完成后将报文交给IPv6模块处理。IPv6协议模块根据IPv6报文头的目的地址重新确定如何转发此报文。
· 解封装过程
解封装过程和封装过程相反。从连接IPv6网络的接口接收到IPv6报文后,将其送到IPv6协议模块。IPv6协议模块检查IPv6报文封装的协议类型。若封装的协议为IPv4,则报文进入隧道处理模块进行解封装处理。解封装之后的IPv4报文被送往IPv4协议模块进行二次路由处理。
IPv6 over IPv6隧道(RFC 2473)是对IPv6报文进行封装,使这些被封装的报文能够在另一个IPv6网络中传输,封装后的报文即IPv6隧道报文。例如,如果运行IPv6协议的两个子网的网络地址不希望泄露到IPv6网络中,则可以通过建立IPv6 over IPv6隧道,实现在两个子网的网络地址不被泄露的情况下,使两个子网互通。
图1-5 IPv6 over IPv6隧道原理图
IPv6报文在隧道中传输经过封装与解封装两个过程,以图1-5为例说明这两个过程:
Device A连接网络A的接口收到IPv6报文后,首先交由IPv6协议模块处理。IPv6协议模块根据报文的目的IPv6地址判断该报文需要通过隧道进行转发,则将此报文发给Tunnel接口。
Tunnel接口收到此报文后,为IPv6报文再封装一个IPv6报文头,封装的IPv6报文头中源IPv6地址为隧道的源端地址,目的IPv6地址为隧道的目的端地址。封装完成后将报文交给IPv6模块处理。IPv6协议模块根据添加的IPv6报文头的目的地址重新确定如何转发此报文。
· 解封装过程
解封装过程和封装过程相反。从IPv6网络接口接收的报文被送到IPv6协议模块。IPv6协议模块检查IPv6报文封装的协议类型。若封装的协议为IPv6,则报文进入隧道处理模块进行解封装处理;解封装之后的报文被送往相应的协议模块进行二次路由处理。
· RFC 1853:IP in IP Tunneling
· RFC 2473:Generic Packet Tunneling in IPv6 Specification
· RFC 2893:Transition Mechanisms for IPv6 Hosts and Routers
· RFC 3056:Connection of IPv6 Domains via IPv4 Clouds
· RFC 4214:Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)
· RFC 6333:Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion
配置Tunnel接口 |
|||
配置IPv6 over IPv4手动隧道 |
|||
配置6to4隧道 |
|||
配置ISATAP隧道 |
|||
隧道两端的设备上,需要创建虚拟的三层接口,即Tunnel接口,以便隧道两端的设备利用Tunnel接口发送报文、识别并处理来自隧道的报文。
配置Tunnel接口时,封装后的报文不能根据目的地址和路由表进行第二次三层转发,需要将封装后的报文发送给业务环回组,由业务环回组将报文回送给转发模块后,再进行三层转发。因此,需要创建tunnel类型的业务环回组,以实现隧道报文的接收和发送。关于业务环回组的创建和配置,请参见“二层技术-以太网交换配置指导”中的“业务环回组”。
创建Tunnel接口,指定隧道模式,并进入Tunnel接口视图 |
创建Tunnel接口时,必须指定隧道的模式;进入已经创建的Tunnel接口视图时,可以不指定隧道模式 |
|
配置Tunnel接口的MTU值 |
缺省情况下,MTU值为64000 |
|
配置Tunnel接口的期望带宽 |
接口的期望带宽会影响链路开销值。具体介绍请参见“三层技术-IP路由配置指导”中的“OSPF”、“OSPFv3”和“IS-IS” |
|
缺省情况下,封装后隧道报文的ToS值与封装前原始IP报文的ToS值相同 |
||
缺省情况下,封装后隧道报文的TTL值为255 |
||
缺省情况下,隧道目的端地址属于公网,设备查找公网路由表转发隧道封装后的报文 在隧道的源接口上通过ip binding vpn-instance命令可以指定隧道源端地址所属的VPN。隧道的源端地址和目的端地址必须属于相同的VPN,否则隧道接口链路状态无法UP ip binding vpn-instance命令的详细介绍,请参见“MPLS命令参考”中的“MPLS L3VPN” 仅R2422及以上版本支持该命令 |
||
配置IPv6 over IPv4手动隧道时,需要注意:
· 在本端设备上为隧道指定的目的端地址,应该与在对端设备上为隧道指定的源端地址相同;在本端设备上为隧道指定的源端地址,应该与在对端设备上为隧道指定的目的端地址相同。
· 在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址和目的端地址。
· 如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。用户可以配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址。用户也可以配置动态路由,在Tunnel接口使能动态路由协议。在隧道的两端都要进行此项配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“IPv6静态路由”或其他路由协议配置。
进入模式为IPv6 over IPv4手动隧道的Tunnel接口视图 |
||
设置Tunnel接口的IPv6地址 |
详细配置方法,请参见“三层技术-IP业务配置指导”中的“IPv6基础” |
缺省情况下,Tunnel接口上不存在IPv6地址 |
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址 |
||
缺省情况下,没有设置隧道的目的端地址 |
||
(可选)设置封装后隧道报文的DF(Don’t Fragment,不分片)标志 |
||
(可选)配置丢弃含有IPv4兼容IPv6地址的IPv6报文 |
缺省情况下,不会丢弃含有IPv4兼容IPv6地址的IPv6报文 |
如图1-6所示,两个IPv6网络分别通过Switch A和Switch B与IPv4网络连接,要求在Switch A和Switch B之间建立IPv6 over IPv4隧道,使两个IPv6网络可以互通。由于隧道终点的IPv4地址不能从IPv6报文的目的地址中自动获取,因此,需要配置IPv6 over IPv4手动隧道。
图1-6 IPv6 over IPv4手动隧道组网图
在开始下面的配置之前,请确保Switch A和Switch B上已经创建相应的VLAN接口,且两者之间IPv4报文路由可达。
# 配置接口Vlan-interface100的地址。
[SwitchA] interface vlan-interface 100
[SwitchA-Vlan-interface100] ip address 192.168.100.1 255.255.255.0
[SwitchA-Vlan-interface100] quit
# 配置接口Vlan-interface101的IPv6地址。
[SwitchA] interface vlan-interface 101
[SwitchA-Vlan-interface101] ipv6 address 3002::1 64
[SwitchA-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchA] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchA] interface FortyGigE 1/0/3
[SwitchA-FortyGigE1/0/3] port service-loopback group 1
[SwitchA-FortyGigE1/0/3] quit
# 创建模式为IPv6 over IPv4手动隧道的接口Tunnel0。
[SwitchA] interface tunnel 0 mode ipv6-ipv4
# 配置Tunnel0接口的IPv6地址。
[SwitchA-Tunnel0] ipv6 address 3001::1/64
# 配置Tunnel0接口的源接口为Vlan-interface100。
[SwitchA-Tunnel0] source vlan-interface 100
# 配置Tunnel0接口的目的端地址(Switch B的Vlan-interface100的IP地址)。
[SwitchA-Tunnel0] destination 192.168.50.1
[SwitchA-Tunnel0] quit
# 配置从Switch A经过Tunnel0接口到IPv6 network 2的静态路由。
[SwitchA] ipv6 route-static 3003:: 64 tunnel 0
# 配置接口Vlan-interface100的地址。
[SwitchB] interface vlan-interface 100
[SwitchB-Vlan-interface100] ip address 192.168.50.1 255.255.255.0
[SwitchB-Vlan-interface100] quit
# 配置接口Vlan-interface101的IPv6地址。
[SwitchB] interface vlan-interface 101
[SwitchB-Vlan-interface101] ipv6 address 3003::1 64
[SwitchB-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchB] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchB] interface FortyGigE 1/0/3
[SwitchB-FortyGigE1/0/3] port service-loopback group 1
[SwitchB-FortyGigE1/0/3] quit
# 创建模式为IPv6 over IPv4手动隧道的接口Tunnel0。
[SwitchB] interface tunnel 0 mode ipv6-ipv4
# 配置Tunnel0接口的IPv6地址。
[SwitchB-Tunnel0] ipv6 address 3001::2/64
# 配置Tunnel0接口的源接口为Vlan-interface100。
[SwitchB-Tunnel0] source vlan-interface 100
# 配置Tunnel0接口的目的端地址(Switch A的Vlan-interface100的IP地址)。
[SwitchB-Tunnel0] destination 192.168.100.1
[SwitchB-Tunnel0] quit
# 配置从Switch B经过Tunnel0接口到IPv6 network 1的静态路由。
[SwitchB] ipv6 route-static 3002:: 64 tunnel 0
# 完成上述配置后,在Switch A和Switch B上分别执行display ipv6 interface命令,可以看出Tunnel0接口处于up状态。(具体显示信息略)
# 从Switch A和Switch B上可以Ping通对端的Vlan-int101接口的IPv6地址。下面仅以Switch A为例。
Ping6(56 data bytes) 3001::1 --> 3003::1, press CTRL_C to break
56 bytes from 3003::1, icmp_seq=0 hlim=64 time=45.000 ms
56 bytes from 3003::1, icmp_seq=1 hlim=64 time=10.000 ms
56 bytes from 3003::1, icmp_seq=2 hlim=64 time=4.000 ms
56 bytes from 3003::1, icmp_seq=3 hlim=64 time=10.000 ms
56 bytes from 3003::1, icmp_seq=4 hlim=64 time=11.000 ms
--- Ping6 statistics for 3003::1 ---
5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss
round-trip min/avg/max/std-dev = 4.000/16.000/45.000/14.711 ms
配置6to4隧道时,需要注意:
· 6to4隧道不需要配置隧道的目的端地址,因为隧道的目的端地址可以通过6to4 IPv6地址中嵌入的IPv4地址自动获得。
· 对于自动隧道,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址。
· 如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。对于自动隧道,用户只能配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址,不支持动态路由。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“IPv6静态路由”。
进入模式为6to4隧道的Tunnel接口视图 |
||
设置Tunnel接口的IPv6地址 |
详细配置方法,请参见“三层技术-IP业务配置指导”中的“IPv6基础” |
缺省情况下,Tunnel接口上不存在IPv6地址 |
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址 |
||
(可选)设置封装后隧道报文的DF(Don’t Fragment,不分片)标志 |
||
(可选)配置丢弃含有IPv4兼容IPv6地址的IPv6报文 |
缺省情况下,不会丢弃含有IPv4兼容IPv6地址的IPv6报文 |
如图1-7所示,两个6to4网络通过网络边缘6to4 switch(Switch A和Switch B)与IPv4网络相连。在Switch A和Switch B之间建立6to4隧道,实现6to4网络中的主机Host A和Host B之间的互通。
图1-7 6to4隧道组网图
为了实现6to4网络之间的互通,除了配置6to4隧道外,还需要为6to4网络内的主机及6to4 switch配置6to4地址。
· Switch A上接口Vlan-int100的IPv4地址为2.1.1.1/24,转换成6to4地址后的前缀为2002:0201:0101::/48,Host A的地址必须使用该前缀。
· Switch B上接口Vlan-int100的IPv4地址为5.1.1.1/24,转换成6to4地址后的前缀为2002:0501:0101::/48,Host B的地址必须使用该前缀。
在开始下面的配置之前,请确保Switch A和Switch B上已经创建相应的VLAN接口,且两者之间IPv4报文路由可达。
# 配置接口Vlan-interface100的地址。
[SwitchA] interface vlan-interface 100
[SwitchA-Vlan-interface100] ip address 2.1.1.1 24
[SwitchA-Vlan-interface100] quit
# 配置接口Vlan-interface101的地址为6to4地址2002:0201:0101:1::1/64。
[SwitchA] interface vlan-interface 101
[SwitchA-Vlan-interface101] ipv6 address 2002:0201:0101:1::1/64
[SwitchA-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchA] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchA] interface FortyGigE 1/0/3
[SwitchA-FortyGigE1/0/3] port service-loopback group 1
[SwitchA-FortyGigE1/0/3] quit
# 创建模式为6to4隧道的接口Tunnel0。
[SwitchA] interface tunnel 0 mode ipv6-ipv4 6to4
# 配置Tunnel0接口的IPv6地址。
[SwitchA-Tunnel0] ipv6 address 3001::1/64
# 配置Tunnel0接口的源接口为Vlan-interface100。
[SwitchA-Tunnel0] source vlan-interface 100
[SwitchA-Tunnel0] quit
# 配置到目的地址2002::/16,下一跳为Tunnel接口的静态路由。
[SwitchA] ipv6 route-static 2002:: 16 tunnel 0
# 配置接口Vlan-interface100的地址。
[SwitchB] interface vlan-interface 100
[SwitchB-Vlan-interface100] ip address 5.1.1.1 24
[SwitchB-Vlan-interface100] quit
# 配置接口Vlan-interface101的地址为6to4地址2002:0501:0101:1::1/64。
[SwitchB] interface vlan-interface 101
[SwitchB-Vlan-interface101] ipv6 address 2002:0501:0101:1::1/64
[SwitchB-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchB] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchB] interface FortyGigE 1/0/3
[SwitchB-FortyGigE1/0/3] port service-loopback group 1
[SwitchB-FortyGigE1/0/3] quit
# 创建模式为6to4隧道的接口Tunnel0。
[SwitchB] interface tunnel 0 mode ipv6-ipv4 6to4
# 配置Tunnel0接口的IPv6地址。
[SwitchB-Tunnel0] ipv6 address 3002::1/64
# 配置Tunnel0接口的源接口为Vlan-interface100。
[SwitchB-Tunnel0] source vlan-interface 100
[SwitchB-Tunnel0] quit
# 配置到目的地址2002::/16,下一跳为Tunnel接口的静态路由。
[SwitchB] ipv6 route-static 2002:: 16 tunnel 0
完成以上配置之后,Host A与Host B可以互相Ping通。
D:\>ping6 -s 2002:201:101:1::2 2002:501:101:1::2
Pinging 2002:501:101:1::2
from 2002:201:101:1::2 with 32 bytes of data:
Reply from 2002:501:101:1::2: bytes=32 time=13ms
Reply from 2002:501:101:1::2: bytes=32 time=1ms
Reply from 2002:501:101:1::2: bytes=32 time=1ms
Reply from 2002:501:101:1::2: bytes=32 time<1ms
Ping statistics for 2002:501:101:1::2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 13ms, Average = 3ms
配置ISATAP隧道时,需要注意:
· ISATAP隧道不需要配置隧道的目的端地址,因为隧道的目的端地址可以通过ISATAP地址中嵌入的IPv4地址自动获得。
· 对于自动隧道,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址。
· 如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。对于自动隧道,用户只能配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址,不支持动态路由。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“IPv6静态路由”。
进入模式为ISATAP隧道的Tunnel接口视图 |
||
设置Tunnel接口的IPv6地址 |
详细配置方法,请参见“三层技术-IP业务配置指导”中的“IPv6基础” |
缺省情况下,Tunnel接口上不存在IPv6地址 |
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址 |
||
(可选)设置封装后隧道报文的DF(Don’t Fragment,不分片)标志 |
||
(可选)配置丢弃含有IPv4兼容IPv6地址的IPv6报文 |
缺省情况下,不会丢弃含有IPv4兼容IPv6地址的IPv6报文 |
如图1-8所示,IPv6网络和IPv4网络通过ISATAP交换机相连,在IPv4网络侧分布着一些IPv6主机。要求将IPv4网络中的IPv6主机通过ISATAP隧道接入到IPv6网络。
图1-8 ISATAP隧道组网图
# 配置接口Vlan-interface100的地址。
[Switch] interface vlan-interface 100
[Switch-Vlan-interface100] ipv6 address 3001::1/64
[Switch-Vlan-interface100] quit
# 配置接口Vlan-interface101的地址。
[Switch] interface vlan-interface 101
[Switch-Vlan-interface101] ip address 1.1.1.1 255.0.0.0
[Switch-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[Switch] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[Switch] interface FortyGigE 1/0/3
[Switch-FortyGigE1/0/3] port service-loopback group 1
[Switch-FortyGigE1/0/3] quit
# 创建模式为ISATAP隧道的接口Tunnel0。
[Switch] interface tunnel 0 mode ipv6-ipv4 isatap
# 配置Tunnel0接口采用EUI-64格式形成IPv6地址。
[Switch-Tunnel0] ipv6 address 2001:: 64 eui-64
# 配置Tunnel0接口的源接口为Vlan-interface101。
[Switch-Tunnel0] source vlan-interface 101
# 取消对RA消息发布的抑制,使主机可以通过交换机发布的RA消息获取地址前缀等信息。
[Switch-Tunnel0] undo ipv6 nd ra halt
[Switch-Tunnel0] quit
ISATAP主机上的具体配置与主机的操作系统有关,下面仅以Windows XP操作系统为例进行说明。
# 在主机上安装IPv6协议。
# 在Windows XP上,ISATAP接口通常为接口2,查看这个ISATAP接口的信息:
Interface 2: Automatic Tunneling Pseudo-Interface
Guid {48FCE3FC-EC30-E50E-F1A7-71172AEEE3AE}
does not use Neighbor Discovery
does not use Router Discovery
routing preference 1
EUI-64 embedded IPv4 address: 0.0.0.0
router link-layer address: 0.0.0.0
preferred link-local fe80::5efe:1.1.1.2, life infinite
link MTU 1280 (true link MTU 65515)
current hop limit 128
reachable time 42500ms (base 30000ms)
retransmission interval 1000ms
DAD transmits 0
default site prefix length 48
# 配置ISATAP交换机的IPv4地址。
C:\>netsh interface ipv6 isatap set router 1.1.1.1
# 完成上述配置后,再来查看ISATAP接口的信息。
Interface 2: Automatic Tunneling Pseudo-Interface
Guid {48FCE3FC-EC30-E50E-F1A7-71172AEEE3AE}
does not use Neighbor Discovery
uses Router Discovery
routing preference 1
EUI-64 embedded IPv4 address: 1.1.1.2
router link-layer address: 1.1.1.1
preferred global 2001::5efe:1.1.1.2, life 29d23h59m46s/6d23h59m46s (public)
preferred link-local fe80::5efe:1.1.1.2, life infinite
link MTU 1500 (true link MTU 65515)
current hop limit 255
reachable time 42500ms (base 30000ms)
retransmission interval 1000ms
DAD transmits 0
default site prefix length 48
对比前后的接口信息,我们可以看到主机获取了2001::/64的前缀,自动生成全球单播地址2001::5efe:1.1.1.2,同时还有一行信息“uses Router Discovery”表明主机启用了路由器发现。
# 查看主机上的IPv6路由信息。
2001::/64 -> 2 pref 1if+8=9 life 29d23h59m43s (autoconf)
::/0 -> 2/fe80::5efe:1.1.1.1 pref 1if+256=257 life 29m43s (autoconf)
(3) 配置IPv6主机
# 配置一条到ISATAP交换机隧道的路由。
C:\>netsh interface ipv6 set route 2001::/64 5 3001::1
# 在ISATAP主机上Ping IPv6主机的地址,可以Ping通,表明ISATAP隧道已经成功建立,ISATAP主机可访问IPv6网络中的主机。
Pinging 3001::2 with 32 bytes of data:
Reply from 3001::2: time=1ms
Reply from 3001::2: time=1ms
Reply from 3001::2: time=1ms
Reply from 3001::2: time=1ms
Ping statistics for 3001::2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 1ms, Maximum = 1ms, Average = 1ms
配置IPv4 over IPv4隧道时,需要注意:
· 在本端设备上为隧道指定的目的端地址,应该与在对端设备上为隧道指定的源端地址相同;在本端设备上为隧道指定的源端地址,应该与在对端设备上为隧道指定的目的端地址相同。
· 在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址和目的端地址。
· 本端隧道接口的IPv4地址与隧道的目的端地址不能在同一个网段内。
· 如果封装前IPv4报文的目的IPv4地址与Tunnel接口的IPv4地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv4地址的转发路由,以便需要进行封装的报文能正常转发。用户可以配置静态路由,指定到达目的IPv4地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址。用户也可以配置动态路由,在Tunnel接口使能动态路由协议。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“静态路由”或其他路由协议配置。
· 配置经过隧道接口的路由时,路由的目的地址不能与该隧道的目的端地址在同一个网段内。
进入模式为IPv4 over IPv4隧道的Tunnel接口视图 |
||||
设置Tunnel接口的IPv4地址 |
缺省情况下,Tunnel接口上不存在IPv4地址 |
|||
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址 |
||||
缺省情况下,没有设置隧道的目的端地址 |
||||
(可选)设置封装后隧道报文的DF(Don’t Fragment,不分片)标志 |
||||
运行IP协议的两个子网Group 1和Group 2位于不同的区域,这两个子网都使用私网地址。通过在交换机Switch A和交换机Switch B之间建立IPv4 over IPv4隧道,实现两个子网的互联。
图1-9 IPv4 over IPv4隧道组网图
在开始下面的配置之前,请确保Switch A和Switch B上已经创建相应的VLAN接口,且两者之间IPv4报文路由可达。
# 配置接口Vlan-interface100的地址。
[SwitchA] interface vlan-interface 100
[SwitchA-Vlan-interface100] ip address 10.1.1.1 255.255.255.0
[SwitchA-Vlan-interface100] quit
# 配置接口Vlan-interface101(隧道的实际物理接口)的地址。
[SwitchA] interface vlan-interface 101
[SwitchA-Vlan-interface101] ip address 2.1.1.1 255.255.255.0
[SwitchA-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchA] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchA] interface FortyGigE 1/0/3
[SwitchA-FortyGigE1/0/3] port service-loopback group 1
[SwitchA-FortyGigE1/0/3] quit
# 创建模式为IPv4 over IPv4隧道的接口Tunnel1。
[SwitchA] interface tunnel 1 mode ipv4-ipv4
# 配置Tunnel1接口的IP地址。
[SwitchA-Tunnel1] ip address 10.1.2.1 255.255.255.0
# 配置Tunnel1接口的源端地址(Vlan-interface101的IP地址)。
[SwitchA-Tunnel1] source 2.1.1.1
# 配置Tunnel1接口的目的端地址(Switch B的Vlan-interface101的IP地址)。
[SwitchA-Tunnel1] destination 3.1.1.1
[SwitchA-Tunnel1] quit
# 配置从Switch A经过Tunnel1接口到Group 2的静态路由。
[SwitchA] ip route-static 10.1.3.0 255.255.255.0 tunnel 1
# 配置接口Vlan-interface100的地址。
[SwitchB] interface vlan-interface 100
[SwitchB-Vlan-interface100] ip address 10.1.3.1 255.255.255.0
[SwitchB-Vlan-interface100] quit
# 配置接口Vlan-interface101(隧道的实际物理接口)的地址。
[SwitchB] interface vlan-interface 101
[SwitchB-Vlan-interface101] ip address 3.1.1.1 255.255.255.0
[SwitchB-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchB] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchB] interface FortyGigE 1/0/3
[SwitchB-FortyGigE1/0/3] port service-loopback group 1
[SwitchB-FortyGigE1/0/3] quit
# 创建模式为IPv4 over IPv4隧道的接口Tunnel2。
[SwitchB] interface tunnel 2 mode ipv4-ipv4
# 配置Tunnel2接口的IP地址。
[SwitchB-Tunnel2] ip address 10.1.2.2 255.255.255.0
# 配置Tunnel2接口的源端地址(Vlan-interface101的IP地址)。
[SwitchB-Tunnel2] source 3.1.1.1
# 配置Tunnel2接口的目的端地址(SwitchA的Vlan-interface101的IP地址)。
[SwitchB-Tunnel2] destination 2.1.1.1
[SwitchB-Tunnel2] quit
# 配置从Switch B经过Tunnel2接口到Group 1的静态路由。
[SwitchB] ip route-static 10.1.1.0 255.255.255.0 tunnel 2
# 完成上述配置后,在Switch A和Switch B上分别执行display interface tunnel命令,可以看出Tunnel接口处于up状态。(具体显示信息略)
# 从Switch A和Switch B上可以Ping通对端的Vlan-interface100接口的IPv4地址。下面仅以Switch A为例。
[SwitchA] ping -a 10.1.1.1 10.1.3.1
Ping 10.1.3.1 (10.1.3.1) from 10.1.1.1: 56 data bytes, press CTRL_C to break
56 bytes from 10.1.3.1: icmp_seq=0 ttl=255 time=2.000 ms
56 bytes from 10.1.3.1: icmp_seq=1 ttl=255 time=1.000 ms
56 bytes from 10.1.3.1: icmp_seq=2 ttl=255 time=0.000 ms
56 bytes from 10.1.3.1: icmp_seq=3 ttl=255 time=1.000 ms
56 bytes from 10.1.3.1: icmp_seq=4 ttl=255 time=1.000 ms
--- Ping statistics for 10.1.3.1 ---
5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.000/1.000/2.000/0.632 ms
配置IPv4 over IPv6隧道时,需要注意:
· 在本端设备上为隧道指定的目的端地址,应该与在对端设备上为隧道指定的源端地址相同;在本端设备上为隧道指定的源端地址,应该与在对端设备上为隧道指定的目的端地址相同。
· 在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址和目的端地址。
· 如果封装前IPv4报文的目的IPv4地址与Tunnel接口的IPv4地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv4地址的转发路由,以便需要进行封装的报文能正常转发。用户可以配置静态路由,指定到达目的IPv4地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址。用户也可以配置动态路由,在Tunnel接口使能动态路由协议。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“静态路由”或其他路由协议配置。
进入模式为IPv6隧道的Tunnel接口视图 |
||
设置Tunnel接口的IPv4地址 |
缺省情况下,Tunnel接口上不存在IPv4地址 |
|
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IPv6地址;如果设置的是隧道的源接口,则该接口的地址将作为封装后隧道报文的源IPv6地址 |
||
缺省情况下,没有设置隧道的目的端地址 |
两个IPv4网络分别通过Switch A和Switch B与IPv6网络连接。通过在Switch A和Switch B之间建立IPv4 over IPv6隧道,实现两个IPv4网络穿越IPv6网络互联。
图1-10 IPv4 over IPv6隧道组网图
在开始下面的配置之前,请确保Switch A和Switch B上已经创建相应的VLAN接口,且两者之间IPv6报文路由可达。
# 配置接口Vlan-interface100的地址。
[SwitchA] interface vlan-interface 100
[SwitchA-Vlan-interface100] ip address 30.1.1.1 255.255.255.0
[SwitchA-Vlan-interface100] quit
# 配置接口Vlan-interface101(隧道的实际物理接口)的地址。
[SwitchA] interface vlan-interface 101
[SwitchA-Vlan-interface101] ipv6 address 2001::1:1 64
[SwitchA-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchA] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchA] interface FortyGigE 1/0/3
[SwitchA-FortyGigE1/0/3] port service-loopback group 1
[SwitchA-FortyGigE1/0/3] quit
# 创建模式为IPv6隧道的接口Tunnel1。
[SwitchA] interface tunnel 1 mode ipv6
# 配置Tunnel1接口的IP地址。
[SwitchA-Tunnel1] ip address 30.1.2.1 255.255.255.0
# 配置Tunnel1接口的源端地址(Vlan-interface101的IP地址)。
[SwitchA-Tunnel1] source 2001::1:1
# 配置Tunnel1接口的目的端地址(Switch B的Vlan-interface101的IP地址) 。
[SwitchA-Tunnel1] destination 2002::2:1
[SwitchA-Tunnel1] quit
# 配置从Switch A经过Tunnel1接口到IPv4 network 2的静态路由。
[SwitchA] ip route-static 30.1.3.0 255.255.255.0 tunnel 1
# 配置接口Vlan-interface100的地址。
[SwitchB] interface vlan-interface 100
[SwitchB-Vlan-interface100] ip address 30.1.3.1 255.255.255.0
[SwitchB-Vlan-interface100] quit
# 配置接口Vlan-interface101(隧道的实际物理接口)的地址。
[SwitchB] interface vlan-interface 101
[SwitchB-Vlan-interface101] ipv6 address 2002::2:1 64
[SwitchB-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchB] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchB] interface FortyGigE 1/0/3
[SwitchB-FortyGigE1/0/3] port service-loopback group 1
[SwitchB-FortyGigE1/0/3] quit
# 创建模式为IPv6隧道的接口Tunnel2。
[SwitchB] interface tunnel 2 mode ipv6
# 配置Tunnel2接口的IP地址。
[SwitchB-Tunnel2] ip address 30.1.2.2 255.255.255.0
# 配置Tunnel2接口的源端地址(Vlan-interface101的IP地址)。
[SwitchB-Tunnel2] source 2002::2:1
# 配置Tunnel2接口的目的端地址(Switch A的Vlan-interface101的IP地址)。
[SwitchB-Tunnel2] destination 2001::1:1
[SwitchB-Tunnel2] quit
# 配置从Switch B经过Tunnel2接口到IPv4 network 1的静态路由。
[SwitchB] ip route-static 30.1.1.0 255.255.255.0 tunnel 2
# 完成上述配置后,在Switch A和Switch B上分别执行display interface tunnel命令,可以看出Tunnel接口处于up状态。(具体显示信息略)
# 从Switch A和Switch B上可以Ping通对端的Vlan-interface100接口的IPv4地址。下面仅以Switch A为例。
[SwitchA] ping -a 30.1.1.1 30.1.3.1
Ping 30.1.3.1 (30.1.3.1) from 30.1.1.1: 56 data bytes, press CTRL_C to break
56 bytes from 30.1.3.1: icmp_seq=0 ttl=255 time=3.000 ms
56 bytes from 30.1.3.1: icmp_seq=1 ttl=255 time=1.000 ms
56 bytes from 30.1.3.1: icmp_seq=2 ttl=255 time=0.000 ms
56 bytes from 30.1.3.1: icmp_seq=3 ttl=255 time=1.000 ms
56 bytes from 30.1.3.1: icmp_seq=4 ttl=255 time=1.000 ms
--- Ping statistics for 30.1.3.1 ---
5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.000/1.200/3.000/0.980 ms
配置IPv6 over IPv6隧道时,需要注意:
· 在本端设备上为隧道指定的目的端地址,应该与在对端设备上为隧道指定的源端地址相同;在本端设备上为隧道指定的源端地址,应该与在对端设备上为隧道指定的目的端地址相同。
· 在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址和目的端地址。
· 本端隧道接口的IPv6地址与隧道的目的端地址不能在同一个网段内。
· 如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。用户可以配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址。用户也可以配置动态路由,在Tunnel接口使能动态路由协议。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“IPv6静态路由”或其他路由协议配置。
· 配置经过隧道接口的路由时,路由的目的地址不能与该隧道的目的端地址在同一个网段内。
进入模式为IPv6隧道的Tunnel接口视图 |
||
设置Tunnel接口的IPv6地址 |
详细配置方法,请参见“三层技术-IP业务配置指导”中的“IPv6基础” |
缺省情况下,Tunnel接口上不存在IPv6地址 |
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IPv6地址;如果设置的是隧道的源接口,则该接口的地址将作为封装后隧道报文的源IPv6地址 |
||
缺省情况下,没有设置隧道的目的端地址 |
||
(可选)配置丢弃含有IPv4兼容IPv6地址的IPv6报文 |
缺省情况下,不会丢弃含有IPv4兼容IPv6地址的IPv6报文 |
运行IPv6协议的两个子网Group 1和Group 2的网络地址不希望泄露到IPv6网络中。网络管理员通过在交换机Switch A和交换机Switch B之间建立IPv6 over IPv6隧道,实现在Group 1和Group 2的网络地址不被泄露的情况下,确保Group 1和Group 2互通。
图1-11 IPv6 over IPv6隧道组网图
在开始下面的配置之前,请确保Switch A和Switch B上已经创建相应的VLAN接口,且两者之间IPv6报文路由可达。
# 配置接口Vlan-interface100的地址。
[SwitchA] interface vlan-interface 100
[SwitchA-Vlan-interface100] ipv6 address 2002:1::1 64
[SwitchA-Vlan-interface100] quit
# 配置接口Vlan-interface101(隧道的实际物理接口)的地址。
[SwitchA] interface vlan-interface 101
[SwitchA-Vlan-interface101] ipv6 address 2001::11:1 64
[SwitchA-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchA] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchA] interface FortyGigE 1/0/3
[SwitchA-FortyGigE1/0/3] port service-loopback group 1
[SwitchA-FortyGigE1/0/3] quit
# 创建模式为IPv6隧道的接口Tunnel1。
[SwitchA] interface tunnel 1 mode ipv6
# 配置Tunnel1接口的IP地址。
[SwitchA-Tunnel1] ipv6 address 3001::1:1 64
# 配置Tunnel1接口的源端地址(Vlan-interface101的IP地址)。
[SwitchA-Tunnel1] source 2001::11:1
# 配置Tunnel1接口的目的端地址(Switch B的Vlan-interface101的IP地址)。
[SwitchA-Tunnel1] destination 2002::22:1
[SwitchA-Tunnel1] quit
# 配置从Switch A经过Tunnel1接口到Group 2的静态路由。
[SwitchA] ipv6 route-static 2002:3:: 64 tunnel 1
# 配置接口Vlan-interface100的地址。
[SwitchB] interface vlan-interface 100
[SwitchB-Vlan-interface100] ipv6 address 2002:3::1 64
[SwitchB-Vlan-interface100] quit
# 配置接口Vlan-interface101(隧道的实际物理接口)的地址。
[SwitchB] interface vlan-interface 101
[SwitchB-Vlan-interface101] ipv6 address 2002::22:1 64
[SwitchB-Vlan-interface101] quit
# 创建业务环回组1,并配置服务类型为tunnel。
[SwitchB] service-loopback group 1 type tunnel
# 将接口FortyGigE1/0/3加入业务环回组1。
[SwitchB] interface FortyGigE 1/0/3
[SwitchB-FortyGigE1/0/3] port service-loopback group 1
[SwitchB-FortyGigE1/0/3] quit
# 创建模式为IPv6隧道的接口Tunnel2。
[SwitchB] interface tunnel 2 mode ipv6
# 配置Tunnel2接口的IP地址。
[SwitchB-Tunnel2] ipv6 address 3001::1:2 64
# 配置Tunnel2接口的源端地址(Vlan-interface101的IP地址)。
[SwitchB-Tunnel2] source 2002::22:1
# 配置Tunnel2接口的目的端地址(Switch A的Vlan-interface101的IP地址)。
[SwitchB-Tunnel2] destination 2001::11:1
[SwitchB-Tunnel2] quit
# 配置从Switch B经过Tunnel2接口到Group 1的静态路由。
[SwitchB] ipv6 route-static 2002:1:: 64 tunnel 2
# 完成上述配置后,在Switch A和Switch B上分别执行display ipv6 interface命令,可以看出Tunnel接口处于up状态。(具体显示信息略)
# 从Switch A和Switch B上可以Ping通对端的Vlan-interface100接口的IPv6地址。下面仅以Switch A为例。
[SwitchA] ping ipv6 -a 2002:1::1 2002:3::1
Ping6(56 data bytes) 2002:1::1 --> 2002:3::1, press CTRL_C to break
56 bytes from 2002:3::1, icmp_seq=0 hlim=64 time=9.000 ms
56 bytes from 2002:3::1, icmp_seq=1 hlim=64 time=1.000 ms
56 bytes from 2002:3::1, icmp_seq=2 hlim=64 time=0.000 ms
56 bytes from 2002:3::1, icmp_seq=3 hlim=64 time=0.000 ms
56 bytes from 2002:3::1, icmp_seq=4 hlim=64 time=0.000 ms
--- Ping6 statistics for 2002:3::1 ---
5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.000/2.000/9.000/3.521 ms
在完成上述配置后,在任意视图下执行display命令可以显示隧道配置后的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除Tunnel接口的统计信息。
显示Tunnel接口的相关信息 |
display interface tunnel [ number [ brief [ description ] ] | brief [ description | down ] ] |
显示Tunnel接口的IPv6相关信息 |
|
清除Tunnel接口的统计信息 |
display ipv6 interface命令的详细介绍,请参见“三层技术-IP业务命令参考”中的“IPv6基础”。
在Tunnel接口上配置了相关的参数后(例如隧道的源端地址、目的端地址和隧道模式),Tunnel接口仍未处于up状态。
Tunnel接口未处于up状态的原因可能是隧道起点的物理接口没有处于up状态,或隧道的目的端地址不可达。
(1) 使用display interface和display ipv6 interface命令查看隧道起点的物理接口状态为up还是down。如果物理接口状态是down的,请检查网络连接。
(2) 使用display ipv6 routing-table和display ip routing-table命令查看是否目的端地址通过路由可达。如果路由表中没有保证隧道通讯的路由表项,请配置相关路由。
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!