02-QoS配置
本章节下载: 02-QoS配置 (938.27 KB)
目 录
QoS(Quality of Service)即服务质量。对于网络业务,服务质量包括传输的带宽、传送的时延、数据的丢包率等。在网络中可以通过保证传输的带宽、降低传送的时延、降低数据的丢包率以及时延抖动等措施来提高服务质量。
网络资源总是有限的,只要存在抢夺网络资源的情况,就会出现服务质量的要求。服务质量是相对网络业务而言的,在保证某类业务的服务质量的同时,可能就是在损害其它业务的服务质量。例如,在网络总带宽固定的情况下,如果某类业务占用的带宽越多,那么其他业务能使用的带宽就越少,可能会影响其他业务的使用。因此,网络管理者需要根据各种业务的特点来对网络资源进行合理的规划和分配,从而使网络资源得到高效利用。
下面从QoS服务模型出发,对目前使用最多、最成熟的一些QoS技术逐一进行描述。在特定的环境下合理地使用这些技术,可以有效地提高服务质量。
通常QoS提供以下三种服务模型:
· Best-Effort service(尽力而为服务模型)
· Integrated service(综合服务模型,简称IntServ)
· Differentiated service(区分服务模型,简称DiffServ)
Best-Effort是一个单一的服务模型,也是最简单的服务模型。对Best-Effort服务模型,网络尽最大的可能性来发送报文。但对时延、可靠性等性能不提供任何保证。
Best-Effort服务模型是网络的缺省服务模型,通过FIFO队列来实现。它适用于绝大多数网络应用,如FTP、E-Mail等。
IntServ是一个综合服务模型,它可以满足多种QoS需求。该模型使用RSVP协议,RSVP运行在从源端到目的端的每个设备上,可以监视每个流,以防止其消耗资源过多。这种体系能够明确区分并保证每一个业务流的服务质量,为网络提供最细粒度化的服务质量区分。
但是,InterServ模型对设备的要求很高,当网络中的数据流数量很大时,设备的存储和处理能力会遇到很大的压力。InterServ模型可扩展性很差,难以在Internet核心网络实施。
DiffServ是一个多服务模型,它可以满足不同的QoS需求。与IntServ不同,它不需要通知网络为每个业务预留资源。区分服务实现简单,扩展性较好。
本文提到的技术都是基于DiffServ服务模型。
QoS技术包括流分类、流量监管、流量整形、接口限速、拥塞管理、拥塞避免等。下面对常用的技术简单进行一下介绍。
图1-1 常用QoS技术在网络中的位置
如图1-1所示,流分类、流量监管、流量整形、拥塞管理和拥塞避免主要完成如下功能:
· 流分类:采用一定的规则识别符合某类特征的报文,它是对网络业务进行区分服务的前提和基础。
· 流量监管:对进入或流出设备的特定流量进行监管。当流量超出设定值时,可以采取限制或惩罚措施,以保护网络资源不受损害。可以作用在接口入方向和出方向。
· 流量整形:一种主动调整流的输出速率的流量控制措施,用来使流量适配下游设备可供给的网络资源,避免不必要的报文丢弃,通常作用在接口出方向。
· 拥塞管理:就是当拥塞发生时如何制定一个资源的调度策略,以决定报文转发的处理次序,通常作用在接口出方向。
· 拥塞避免:监督网络资源的使用情况,当发现拥塞有加剧的趋势时采取主动丢弃报文的策略,通过调整队列长度来解除网络的过载,通常作用在接口出方向。
QoS的配置方式分为QoS策略配置方式和非QoS策略配置方式两种。
有些QoS功能只能使用其中一种方式来配置,有些使用两种方式都可以进行配置。在实际应用中,两种配置方式也可以结合起来使用。
非QoS策略配置方式是指不通过QoS策略来进行配置。例如,端口限速功能可以通过直接在接口上配置来实现。
QoS策略配置方式是指通过配置QoS策略来实现QoS功能。
QoS策略包含了三个要素:类、流行为、策略。用户可以通过QoS策略将指定的类和流行为绑定起来,灵活地进行QoS配置。
类的要素包括:类的名称和类的规则。
用户可以通过命令定义一系列的规则来对报文进行分类。
流行为用来定义针对报文所做的QoS动作。
流行为的要素包括:流行为的名称和流行为中定义的动作。
用户可以通过命令在一个流行为中定义多个动作。
策略用来将指定的类和流行为绑定起来,对分类后的报文执行流行为中定义的动作。
策略的要素包括:策略名称、绑定在一起的类和流行为的名称。
用户可以在一个策略中定义多个类与流行为的绑定关系。
如图2-1所示:
图2-1 QoS策略配置方式的步骤
定义类首先要创建一个类名称,然后在此类视图下配置其匹配规则。
表2-1 定义类
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
定义类并进入类视图 |
traffic classifier tcl-name [ operator { and | or } ] |
必选 缺省为and,即类视图下各匹配规则之间的关系为逻辑与 · and:报文只有匹配了所有的规则,设备才认为报文属于这个类 · or:报文只要匹配了类中的任何一个规则,设备就认为报文属于这个类 |
定义匹配数据包的规则 |
if-match match-criteria |
必选 |
match-criteria:匹配规则,取值如表2-2所示。
取值 |
描述 |
acl [ ipv6 ] { acl-number | name acl-name } |
定义匹配ACL的规则 acl-number是ACL的序号,IPv4 ACL序号的取值范围是2000~3999,二层ACL序号的取值范围是4000~4999,IPv6 ACL序号的取值范围是2000~3999 acl-name是ACL的名称,为1~63个字符的字符串,不区分大小写,必须以英文字母a~z或A~Z开头,为避免混淆,ACL的名称不可以使用英文单词all |
any |
定义匹配所有数据包的规则 |
customer-dot1p 8021p-list |
定义匹配用户网络802.1p优先级的规则,8021p-list为CoS取值的列表,最多可以输入8个CoS取值,用空格隔开,CoS的取值范围为0~7 |
customer-vlan-id vlan-id-list |
定义匹配用户网络VLAN ID的规则,vlan-id-list为VLAN ID的列表,形式可以为vlan-id to vlan-id,也可以输入多个不连续的VLAN ID,用空格隔开,设备最多允许用户同时指定8个VLAN ID;VLAN ID的取值范围为1~4094 |
destination-mac mac-address |
定义匹配目的MAC地址的规则 |
dscp dscp-list |
定义匹配DSCP的规则,dscp-list为DSCP取值的列表,最多可以输入8个DSCP取值,用空格隔开,DSCP的取值范围为0~63或表13-4中的关键字 |
ip-precedence ip-precedence-list |
定义匹配IP优先级的规则,ip-precedence-list为IP优先级取值的列表,最多可以输入8个IP优先级取值,用空格隔开,IP优先级的取值范围为0~7 |
protocol protocol-name |
定义匹配协议的规则,protocol-name取值为IP或IPv6 |
qos-local-id local-id-value |
定义匹配qos-local-id的规则,local-id-value为QoS本地ID,取值范围为1~4095 在本系列交换机上,能够支持的local-id-value值为1~3999 |
service-dot1p 8021p-list |
定义匹配运营商网络802.1p优先级的规则,8021p-list为CoS取值的列表,最多可以输入8个CoS取值,用空格隔开,CoS的取值范围为0~7 |
service-vlan-id vlan-id-list |
定义匹配运营商网络VLAN ID的规则,vlan-id-list为VLAN ID的列表,形式可以为vlan-id to vlan-id,也可以输入多个不连续的VLAN ID,用空格隔开,设备最多允许用户同时指定8个VLAN ID;VLAN ID的取值范围为1~4094 |
source-mac mac-address |
定义匹配源MAC地址的规则 |
system-index index-value-list |
定义规则来匹配预定义的上送控制平面报文类型,index-value-list为系统预定义匹配字段索引号(system-index)的列表,最多可以输入8个system-index值,system-index值的取值范围为1~128 |
如果指定类的逻辑关系为and,使用if-match命令定义匹配规则时,有如下注意事项:
· 匹配规则含有acl或acl ipv6时,如果在类中配置了多条这样的匹配规则,在应用策略时,匹配acl或acl ipv6的规则之间的逻辑关系实际为or。
· 匹配规则含有customer-vlan-id或service-vlan-id时,如果在类中配置了多条这样的匹配规则,在应用策略时,匹配customer-vlan-id或service-vlan-id的规则之间的逻辑关系实际为or。
当流分类中各规则之间的逻辑关系为and时,对于以下匹配条件,用户虽然可以通过重复执行if-match命令来配置多条匹配不同取值的规则,或在一条规则中使用list形式输入多个匹配值,但在应用使用该类的QoS策略时,系统将提示应用失败:
· customer-dot1p 8021p-list
· destination-mac mac-address(不支持list形式)
· dscp dscp-list
· ip-precedence ip-precedence-list
· service-dot1p 8021p-list
· source-mac mac-address(不支持list形式)
· system-index index-value-list
如果用户需要创建匹配以上某一字段多个取值的规则,需要在创建流分类时指定各规则之间的逻辑关系为or,然后再通过多次执行if-match命令的方式来配置匹配多个值的规则。
定义流行为首先需要创建一个流行为名称,然后可以在此流行为视图下根据需要配置相应的流行为。每个流行为由一组QoS动作组成。
表2-3 定义流行为
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
定义一个流行为并进入流行为视图 |
traffic behavior behavior-name |
必选 |
配置流行为 |
流行为就是对应符合流分类的报文做出相应的QoS动作,例如流量监管、流量过滤、流量重定向、重标记、流量统计等,具体情况请参见本文相关章节 |
在策略视图下为使用的类指定对应的流行为。以某种匹配规则将流区分为不同的类,再结合不同的流行为就能很灵活的实现各种QoS功能。
表2-4 在策略中为类指定流行为
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
定义策略并进入策略视图 |
qos policy policy-name |
必选 |
在策略中为类指定采用的流行为 |
classifier tcl-name behavior behavior-name [ mode dot1q-tag-manipulation ] |
必选 mode dot1q-tag-manipulation用来设置VLAN映射功能中的类和流行为对应关系。有关VLAN映射功能的介绍,请参见“二层技术-以太网交换配置指导”中的“VLAN映射” |
· 如果QoS策略在定义流分类规则时引用了ACL,则忽略ACL规则的动作,以流行为中定义的动作为准,报文匹配只使用ACL中的分类域。
· 当用户在策略下配置了多组类和流行为的对应关系时,如果某个流行为中配置了nest、remark customer-vlan-id或remark service-vlan-id动作,建议用户不要在此流行为中配置其他动作,以保证应用策略后实际的运行结果与用户的配置意图一致。有关nest、remark customer-vlan-id或remark service-vlan-id动作的介绍,请参见“二层技术-以太网交换配置指导”中的“VLAN映射配置”。
QoS策略支持以下应用方式:
· 基于端口应用QoS策略:QoS策略对通过端口接收或发送的流量生效。
· 基于上线用户应用QoS策略:QoS策略对通过上线用户接收或发送的流量生效。
· 基于VLAN应用QoS策略:QoS策略对通过同一个VLAN内所有接口接收或发送的流量生效。
· 基于全局应用QoS策略:QoS策略对所有流量生效。
· 基于控制平面应用QoS策略:QoS策略对通过控制平面接收的流量生效。
· 当QoS策略应用到端口、VLAN、全局或未激活的User Profile后,用户仍然可以修改QoS策略中的流分类规则和流行为,以及二者的对应关系。当流分类规则中匹配的是ACL时,允许删除或修改该ACL(包括向该ACL中添加、删除和修改规则)。
· 如果User Profile处于激活状态,既不能修改策略的内容(包括流分类引用的ACL规则),也不能删除已经应用到此User Profile的策略。
· 在基于端口、基于VLAN和基于全局三种应用QoS策略的方式中,基于端口的方式优先级高于基于VLAN的方式,基于全局的方式优先级最低。即设备对于接收/发送的流量,首先匹配端口上应用的QoS策略中的流分类条件,如果匹配则直接执行端口的QoS策略而不再执行VLAN和全局的策略。
一个策略可以应用于多个端口。端口的每个方向(出和入两个方向)只能应用一个策略。
表2-5 在端口上应用策略
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
在端口上应用关联的策略 |
qos apply policy policy-name { inbound | outbound } |
必选 |
如果QoS策略应用在端口的出方向,则QoS策略对本地协议报文不起作用。本地协议报文是指端口所在设备自身发出的某些报文,主要是维持设备正常运行的重要协议报文。为了确保这些报文能够被不受影响的发送出去,即便在端口的出方向应用了QoS策略,由本设备发出的协议报文也不会受到QoS策略的限制,从而降低了因配置QoS而误将这些报文丢弃或进行其他处理的风险。一些常见的本地协议报文如下:链路维护报文、STP、LDP、RSVP等。
一个策略可以应用于多个上线用户。上线用户的每个方向(发送和接收两个方向)只能应用一个策略,如果用户想修改某方向上应用的策略,必须先取消原先的配置,然后再配置新的策略。
表2-6 基于上线用户应用QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入user-profile视图 |
user-profile profile-name |
必选 进入user-profile视图后,下面进行的配置只在User Profile处于激活状态,且用户成功上线后才生效 关于User Profile的相关介绍以及配置,请参见“安全配置指导”中的“User Profile” |
应用关联的策略 |
qos apply policy policy-name { inbound | outbound } |
必选 inbound是对设备接收的上线用户流量(即上线用户发送的流量)应用策略;outbound是对设备发送的上线用户流量(即上线用户接收的流量)应用策略 |
退回系统视图 |
quit |
- |
激活User Profile |
user-profile profile-name enable |
必选 缺省情况下,User Profile处于未激活状态 |
· user-profile视图下应用的策略中的流行为只支持remark、car、filter三种动作。
· user-profile视图下应用的策略不能为空策略,因为应用空策略的User Profile不能被激活。
· 上线用户目前支持802.1X和Portal两种接入认证方式。
基于VLAN应用QoS策略可以方便对某个VLAN上的所有流量进行管理。
表2-7 基于VLAN应用的QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
应用QoS策略到指定的VLAN |
qos vlan-policy policy-name vlan vlan-id-list { inbound | outbound } |
必选 |
基于VLAN应用的QoS策略不能应用在动态VLAN上。例如,在运行GVRP协议的情况下,设备可能会动态创建VLAN,QoS策略不能应用在该动态VLAN上。
基于全局应用QoS策略可以方便对设备上的所有流量进行管理。
表2-8 基于全局应用QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
基于全局应用QoS策略 |
qos apply policy policy-name global { inbound | outbound } |
必选 |
设备支持数据平面和控制平面:
· 数据平面(DP,Data Plane):是指对报文进行收发、交换的处理单元,它的主要工作是转发报文。在设备上,与之相对应的核心物理实体就是各种专用转发芯片,它们有极高的处理速度和很强的数据吞吐能力。
· 控制平面(CP,Control Plane):是指运行大部分路由交换协议进程的处理单元,它的主要工作是进行协议报文的解析和协议的计算。在设备上,与之相对应的核心物理实体就是CPU,它具备灵活的报文处理能力,但数据吞吐能力有限。
数据平面接收到无法识别或处理的报文会送到控制平面进行进一步处理。如果上送控制平面的报文速率超过了控制平面的处理能力,那么上送控制平面的正常报文会得不到正确转发或及时处理,从而影响协议的正常运行,例如设备受到DoS(Denial of Service,拒绝服务)攻击。
为了解决此问题,用户可以把QoS策略应用在控制平面上,通过对上送控制平面的报文进行过滤、限速等QoS处理,达到保护控制平面正常报文的收发、维护控制平面正常处理状态的目的。
表2-9 应用控制平面策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入控制平面视图 |
control-plane slot slot-number |
必选 |
应用QoS策略 |
qos apply policy policy-name inbound |
必选 |
· 缺省情况下,设备会在控制平面上应用预定义的QoS策略,并默认生效。预定义的QoS策略中通过system-index来标识各种上送控制平面的报文类型,用户也可以在流分类视图下通过if-match命令引用这些system-index来进行报文分类,然后根据需要为这些报文重新配置流行为。系统预定义的QoS策略信息可以通过display qos policy control-plane pre-defined命令查看。
· 在控制平面应用QoS策略时,如果流分类的匹配条件是system-index,则流行为的动作只能为car,或者car和accounting packet动作的组合,且只有cir参数的取值可以被正常应用。
· 在控制平面上应用QoS策略时,如果流分类的匹配条件不是system-index,则流行为中的动作将对该控制平面所在设备上的数据流量也将生效。
在任意视图下执行display命令可以显示QoS策略的运行情况,通过查看显示信息验证配置的效果。
表2-10 QoS策略显示和维护
操作 |
命令 |
显示配置的类信息 |
display traffic classifier user-defined [ tcl-name ] [ | { begin | exclude | include } regular-expression ] |
显示配置的流行为信息 |
display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ] |
显示用户定义策略的配置信息 |
display qos policy user-defined [ policy-name [ classifier tcl-name ] ] [ | { begin | exclude | include } regular-expression ] |
显示指定端口或所有端口上策略的配置信息和运行情况 |
display qos policy interface [ interface-type interface-number ] [ inbound | outbound ] [ | { begin | exclude | include } regular-expression ] |
显示VLAN应用QoS策略的信息 |
display qos vlan-policy { name policy-name | vlan vlan-id } [ slot slot-number ] [ inbound | outbound ] [ | { begin | exclude | include } regular-expression ] |
显示全局应用QoS策略的信息 |
display qos policy global [ slot slot-number ] [ inbound | outbound ] [ | { begin | exclude | include } regular-expression ] |
显示控制平面应用QoS策略的信息 |
display qos policy control-plane slot slot-number [ inbound ] [ | { begin | exclude | include } regular-expression ] |
显示预定义控制平面应用QoS策略的信息 |
display qos policy control-plane pre-defined [ slot slot-number ] [ | { begin | exclude | include } regular-expression ] |
清除VLAN应用QoS策略的统计信息 |
reset qos vlan-policy [ vlan vlan-id ] [ inbound | outbound ] |
清除全局应用QoS策略的统计信息 |
reset qos policy global [ inbound | outbound ] |
清空控制平面应用QoS策略的统计信息 |
reset qos policy control-plane slot slot-number [ inbound ] |
报文在进入设备以后,设备会根据自身情况和相应规则分配或修改报文的各种优先级的值,为队列调度和拥塞控制服务。
优先级映射功能通过报文所携带的优先级字段来映射其他优先级字段值,就可以获得各种用以决定报文调度能力的各种优先级字段,从而可以全面有效的控制报文的转发调度能力。
优先级用于标识报文传输的优先程度,可以分为两类:报文携带优先级和设备调度优先级。
报文携带优先级包括:802.1p优先级、DSCP优先级、IP优先级等。这些优先级都是根据公认的标准和协议生成,体现了报文自身的优先等级。相关介绍请参见13.2 附录 B 各种优先级介绍。
设备调度优先级是指报文在设备内转发时所使用的优先级,只对当前设备自身有效。设备调度优先级包括以下几种:
· 本地优先级(LP):设备为报文分配的一种具有本地意义的优先级,每个本地优先级对应一个队列,本地优先级值越大的报文,进入的队列优先级越高,从而能够获得优先的调度。
· 丢弃优先级(DP):在进行报文丢弃时参考的参数,丢弃优先级值越大的报文越被优先丢弃。
优先级映射功能通过优先级映射表来进行,设备提供了多张优先级映射表,分别对应相应的优先级映射关系:
· dot1p-dp:802.1p优先级到丢弃优先级映射表;
· dot1p-lp:802.1p优先级到本地优先级映射表;
· dscp-dot1p:DSCP到802.1p优先级映射表,仅对IP报文生效;
· dscp-dp:DSCP到丢弃优先级映射表,仅对IP报文生效;
· dscp-dscp:DSCP到DSCP映射表,仅对IP报文生效;
通常情况下,可以通过查找缺省优先级映射表(13.1 附录 A 缺省优先级映射表)来为报文分配相应的优先级。如果缺省优先级映射表无法满足用户需求,可以根据实际情况对映射表进行修改。
通常情况下,报文可能会携带有多种优先级,设备在进行优先级映射时,需要首先确定采用哪种优先级作为参考,再通过优先级映射表映射出调度优先级。优先级信任模式就是用来指定设备进行优先级映射时作为参考的报文携带优先级,本系列交换机支持以下几种优先级信任模式:
· 信任DSCP优先级:设备将根据报文携带的DSCP优先级查找映射表进行优先级映射。
表3-1 信任DSCP优先级的映射结果(优先级映射表处于缺省状态)
报文携带的DSCP优先级 |
本地优先级 |
队列编号 |
0 to 7 |
0 |
0 |
8 to 15 |
1 |
1 |
16 to 23 |
2 |
2 |
24 to 31 |
3 |
3 |
32 to 39 |
4 |
4 |
40 to 47 |
5 |
5 |
48 to 55 |
6 |
6 |
56 to 63 |
7 |
7 |
· 信任802.1p优先级:设备将根据报文携带的802.1p优先级查找映射表进行优先级映射。
表3-2 信任802.1p优先级的映射结果(优先级映射表处于缺省状态)
报文携带的802.1p优先级 |
本地优先级 |
队列编号 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
1 |
1 |
3 |
3 |
3 |
4 |
4 |
4 |
5 |
5 |
5 |
6 |
6 |
6 |
7 |
7 |
7 |
在信任802.1p优先级的情况下,如果报文未携带VLAN Tag,设备将使用端口优先级作为802.1p优先级,映射效果请参见表3-3。
· 不信任报文优先级:设备将使用接收报文的端口的端口优先级作为报文的802.1p优先级,并通过映射表进行优先级映射。
表3-3 不信任报文优先级的映射结果(优先级映射表处于缺省状态)
端口优先级 |
本地优先级 |
队列编号 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
1 |
1 |
3 |
3 |
3 |
4 |
4 |
4 |
5 |
5 |
5 |
6 |
6 |
6 |
7 |
7 |
7 |
另外,当端口信任802.1p优先级,而接收到的报文又没有携带802.1Q标签时,设备将使用接收端口的端口优先级作为报文的802.1p优先级,并依此进行优先级映射。
对于接收到的以太网报文,交换机根据优先级信任模式和报文的802.1q标签状态,将采用不同的方式为其标记调度优先级。如图3-1所示:
修改优先级映射关系的方式有三种:配置优先级映射表、配置优先级信任模式和配置端口优先级。
建议进行各项配置的时候先整体规划网络QoS。
表3-4 优先级映射配置任务简介
配置任务 |
说明 |
详细配置 |
配置优先级映射表 |
可选 |
|
配置优先级信任模式 |
可选 |
|
配置端口优先级 |
可选 |
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入指定的优先级映射表视图 |
qos map-table { dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp } |
必选 用户根据需要进入相应的优先级映射表视图 |
配置指定优先级映射表参数,定义优先级映射关系 |
import import-value-list export export-value |
必选 新配置的映射项将覆盖原有映射项 |
根据报文自身的优先级,查找优先级映射表,为报文分配优先级参数,可以通过配置优先级信任模式的方式来实现。
在配置接口/端口组上的优先级模式时,用户可以选择下列信任模式:
· 信任报文自带的802.1p优先级,以此优先级进行优先级映射。
· 信任IP报文自带的DSCP优先级,以此优先级进行优先级映射。
· 不信任报文优先级,使用端口优先级作为报文的802.1p优先级进行优先级映射。
表3-6 配置优先级信任模式
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
配置端口信任报文的DSCP优先级 |
qos trust dscp |
三者选其一 缺省情况下,设备不信任报文携带的优先级 |
|
配置信任报文的802.1p优先级 |
qos trust dot1p |
||
配置不信任报文携带的优先级 |
undo qos trust |
按照接收端口的端口优先级,通过一一映射为报文分配相应的优先级。
表3-7 配置端口优先级
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
配置端口优先级 |
qos priority priority-value |
必选 端口优先级的缺省值为0 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后优先级映射的运行情况,通过查看显示信息验证配置的效果。
表3-8 优先级映射显示和维护
操作 |
命令 |
显示指定优先级映射表配置情况 |
display qos map-table [ dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp ] [ | { begin | exclude | include } regular-expression |
显示端口优先级信任模式信息 |
display qos trust interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ] |
Device A和Device B通过Device C实现互连。网络环境描述如下:
· Device A通过端口GigabitEthernet1/0/1接入Device C;
· Device B通过端口GigabitEthernet1/0/2接入Device C。
· Device A和Device B向Device C发送的报文都不携带VLAN Tag。
要求通过配置实现如下需求:如果Device C在出口发生拥塞,则优先处理Device A发出的报文(优先让Device A访问Server)。
图3-2 优先级信任模式和端口优先级配置举例组网图
# 在GigabitEthernet1/0/1和GigabitEthernet1/0/2端口上分别配置端口优先级,GigabitEthernet1/0/1上配置的端口优先级值要高于GigabitEthernet1/0/2上配置的端口优先级值。
<DeviceC> system-view
[DeviceC] interface gigabitethernet 1/0/1
[DeviceC-GigabitEthernet1/0/1] qos priority 3
[DeviceC-GigabitEthernet1/0/1] quit
[DeviceC] interface gigabitethernet 1/0/2
[DeviceC-GigabitEthernet1/0/2] qos priority 1
[DeviceC-GigabitEthernet1/0/2] quit
公司企业网通过Device实现各部门之间的互连。网络环境描述如下:
· 市场部门通过端口GigabitEthernet1/0/1接入Device,标记市场部门发出的报文的802.1p优先级为3;
· 研发部门通过端口GigabitEthernet1/0/2接入Device,标记研发部门发出的报文的802.1p优先级为4;
· 管理部门通过端口GigabitEthernet1/0/3接入Device,标记管理部门发出的报文的802.1p优先级为5。
实现如下需求:
访问公共服务器的时候,研发部门 > 管理部门 > 市场部门。
· 通过优先级映射将研发部门发出的报文放入出队列6中,优先进行处理;
· 通过优先级映射将管理部门发出的报文放入出队列4中,次优先进行处理;
· 通过优先级映射将市场部门发出的报文放入出队列2中,最后进行处理。
通过HTTP方式访问Internet的时候,管理部门 > 市场部门 > 研发部门。
· 重标记管理部门发出的报文本地优先级为6,优先进行处理;
· 重标记市场部门发出的报文的本地优先级为4,次优先进行处理;
· 重标记研发部门发出的报文的本地优先级为2,最后进行处理。
图3-3 优先级映射表和重标记配置举例组网图
(1) 配置端口的端口优先级
# 配置端口GigabitEthernet1/0/1的端口优先级为3。
<Device> system-view
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos priority 3
[Device-GigabitEthernet1/0/1] quit
# 配置端口GigabitEthernet1/0/2的端口优先级为4。
[Device] interface gigabitethernet 1/0/2
[Device-GigabitEthernet1/0/2] qos priority 4
[Device-GigabitEthernet1/0/2] quit
# 配置端口GigabitEthernet1/0/3的端口优先级为5。
[Device] interface gigabitethernet 1/0/3
[Device-GigabitEthernet1/0/3] qos priority 5
[Device-GigabitEthernet1/0/3] quit
(2) 配置优先级映射表
# 配置802.1p优先级到本地优先级映射表,将802.1p优先级3、4、5对应的本地优先级配置为2、6、4。保证访问服务器的优先级为研发部门(6)>管理部门(4)>市场部门(2)。
[Device] qos map-table dot1p-lp
[Device-maptbl-dot1p-lp] import 3 export 2
[Device-maptbl-dot1p-lp] import 4 export 6
[Device-maptbl-dot1p-lp] import 5 export 4
[Device-maptbl-dot1p-lp] quit
(3) 配置重标记
将管理、市场、研发部门发出的HTTP报文的802.1p优先级分别重标记为4、5、3,使其能根据前面配置的映射表分别映射到本地优先级6、4、2。
# 创建ACL 3000,用来匹配HTTP报文。
[Device] acl number 3000
[Device-acl-adv-3000] rule permit tcp destination-port eq 80
[Device-acl-adv-3000] quit
# 创建流分类,匹配ACL 3000。
[Device] traffic classifier http
[Device-classifier-http] if-match acl 3000
[Device-classifier-http] quit
# 配置管理部门的重标记策略并应用到GigabitEthernet1/0/3端口的入方向。
[Device] traffic behavior admin
[Device-behavior-admin] remark dot1p 4
[Device-behavior-admin] quit
[Device] qos policy admin
[Device-qospolicy-admin] classifier http behavior admin
[Device-qospolicy-admin] quit
[Device] interface gigabitethernet 1/0/3
[Device-GigabitEthernet1/0/3] qos apply policy admin inbound
# 配置市场部门的重标记策略并应用到GigabitEthernet1/0/1端口的入方向。
[Device] traffic behavior market
[Device-behavior-market] remark dot1p 5
[Device-behavior-market] quit
[Device] qos policy market
[Device-qospolicy-market] classifier http behavior market
[Device-qospolicy-market] quit
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy market inbound
# 配置研发部门的重标记策略并应用到GigabitEthernet1/0/2端口的入方向。
[Device] traffic behavior rd
[Device-behavior-rd] remark dot1p 3
[Device-behavior-rd] quit
[Device] qos policy rd
[Device-qospolicy-rd] classifier http behavior rd
[Device-qospolicy-rd] quit
[Device] interface gigabitethernet 1/0/2
[Device-GigabitEthernet1/0/2] qos apply policy rd inbound
如果不限制用户发送的流量,那么大量用户不断突发的数据只会使网络更拥挤。为了使有限的网络资源能够更好地发挥效用,更好地为更多的用户服务,必须对用户的流量加以限制。比如限制每个时间间隔某个流只能得到承诺分配给它的那部分资源,防止由于过分突发所引发的网络拥塞。
流量监管、流量整形和端口限速都可以通过对流量规格的监督来限制流量及其资源的使用,它们有一个前提条件,就是要知道流量是否超出了规格,然后才能根据评估结果实施调控。一般采用令牌桶(Token Bucket)对流量的规格进行评估。
令牌桶可以看作是一个存放一定数量令牌的容器。系统按设定的速度向桶中放置令牌,当桶中令牌满时,多出的令牌溢出,桶中令牌不再增加。
在用令牌桶评估流量规格时,是以令牌桶中的令牌数量是否足够满足报文的转发为依据的。如果桶中存在足够的令牌可以用来转发报文,称流量遵守或符合这个规格,否则称为不符合或超标。
评估流量时令牌桶的参数包括:
· 平均速率:向桶中放置令牌的速率,即允许的流的平均速度。通常配置为CIR。
· 突发尺寸:令牌桶的容量,即每次突发所允许的最大的流量尺寸。通常配置为CBS,突发尺寸必须大于最大报文长度。
每到达一个报文就进行一次评估。每次评估,如果桶中有足够的令牌可供使用,则说明流量控制在允许的范围内,此时要从桶中取走与报文转发权限相当的令牌数量;否则说明已经耗费太多令牌,流量超标了。
为了评估更复杂的情况,实施更灵活的调控策略,可以配置两个令牌桶(简称C桶和E桶)。例如TP中有四个参数:
· CIR:表示向C桶中投放令牌的速率,即C桶允许传输或转发报文的平均速率;
· CBS:表示C桶的容量,即C桶瞬间能够通过的承诺突发流量;
· PIR:表示向E桶中投放令牌的速率,即E桶允许传输或转发报文的最大速率;
· EBS:表示E桶的容量,即E桶瞬间能够通过的超出突发流量。
CBS和EBS是由两个不同的令牌桶承载的。每次评估时,依据下面的情况,可以分别实施不同的流控策略:
· 如果C桶有足够的令牌,报文被标记为green,即绿色报文;
· 如果C桶令牌不足,但E桶有足够的令牌,报文被标记为yellow,即黄色报文;
· 如果C桶和E桶都没有足够的令牌,报文被标记为red,即红色报文。
流量监管支持入/出两个方向,为了方便描述,下文以出方向为例。
流量监管就是对流量进行控制,通过监督进入网络的流量速率,对超出部分的流量进行“惩罚”,使进入的流量被限制在一个合理的范围之内,以保护网络资源和运营商的利益。例如可以限制HTTP报文不能占用超过50%的网络带宽。如果发现某个连接的流量超标,流量监管可以选择丢弃报文,或重新配置报文的优先级。
图4-1 流量监管示意图
流量监管广泛的用于监管进入Internet服务提供商ISP的网络流量。流量监管还包括对所监管流量的流分类服务,并依据不同的评估结果,实施预先设定好的监管动作。这些动作可以是:
· 转发:比如对评估结果为“符合”的报文继续转发。
· 丢弃:比如对评估结果为“不符合”的报文进行丢弃。
· 改变优先级并转发:比如对评估结果为“符合”的报文,将其优先级标记为其他值后再进行转发,可以改变的优先级包括:802.1p优先级、DSCP优先级、本地优先级。
流量整形只针对设备的出方向。
流量整形是一种主动调整流量输出速率的措施。一个典型应用是基于下游网络节点的流量监管指标来控制本地流量的输出。
流量整形与流量监管的主要区别在于,流量整形对流量监管中需要丢弃的报文进行缓存——通常是将它们放入缓冲区或队列内,如图4-2所示。当令牌桶有足够的令牌时,再均匀的向外发送这些被缓存的报文。流量整形与流量监管的另一区别是,整形可能会增加延迟,而监管几乎不引入额外的延迟。
例如,在图4-3所示的应用中,设备Device A向Device B发送报文。Device B要对Device A发送来的报文进行流量监管,对超出规格的流量直接丢弃。
为了减少报文的无谓丢失,可以在Device A的出口对报文进行流量整形处理。将超出流量整形特性的报文缓存在Device A中。当可以继续发送下一批报文时,流量整形再从缓冲队列中取出报文进行发送。这样,发向Device B的报文将都符合Device B的流量规定。
端口限速支持入/出两个方向,为了方便描述,下文以出方向为例。
利用端口限速可以在一个端口上限制发送报文(包括紧急报文)的总速率。
端口限速也是采用令牌桶进行流量控制。如果在设备的某个端口上配置了端口限速,所有经由该端口发送的报文首先要经过LR的令牌桶进行处理。如果令牌桶中有足够的令牌,则报文可以发送;否则,报文将进入QoS队列进行拥塞管理。这样,就可以对通过该端口的报文流量进行控制。
由于采用了令牌桶控制流量,当令牌桶中存有令牌时,可以允许报文的突发性传输;当令牌桶中没有令牌时,报文必须等到桶中生成了新的令牌后才可以继续发送。这就限制了报文的流量不能大于令牌生成的速度,达到了限制流量,同时允许突发流量通过的目的。
与流量监管相比,端口限速能够限制在端口上通过的所有报文。当用户只要求对所有报文限速时,使用端口限速比较简单。
表4-1 流量监管配置
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义类并进入类视图 |
traffic classifier tcl-name [ operator { and | or } ] |
- |
|
定义匹配数据包的规则 |
if-match match-criteria |
- |
|
退出类视图 |
quit |
- |
|
定义一个流行为并进入流行为视图 |
traffic behavior behavior-name |
- |
|
配置流量监管动作 |
car cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peak-information-rate ] [ green action ] [ yellow action ] [ red action ] [ hierarchy-car hierarchy-car-name [ mode { and | or } ] ] |
必选 |
|
退出流行为视图 |
quit |
- |
|
定义策略并进入策略视图 |
qos policy policy-name |
- |
|
在策略中为类指定采用的流行为 |
classifier tcl-name behavior behavior-name |
- |
|
退出策略视图 |
quit |
- |
|
应用QoS策略 |
基于端口 |
- |
|
基于上线用户 |
- |
||
基于VLAN |
- |
||
基于全局 |
- |
||
基于控制平面 |
- |
在一个流行为中,流量监管动作不能与重标记优先级(包括本地优先级、丢弃优先级、802.1p优先级、DSCP优先级、IP优先级)的动作同时配置,否则会导致QoS策略不能正常应用。
本系列交换机的流量整形为基于队列的流量整形,即针对某一个队列的数据包设置整形参数。
表4-2 流量整形配置
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
在端口配置流量整形 |
qos gts queue queue-number cir committed-information-rate [ cbs committed-burst-size ] |
必选 |
配置端口限速就是限制端口向外发送数据或者接收数据的速率。
表4-3 端口限速配置过程
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
配置端口限速 |
qos lr { inbound | outbound } cir committed-information-rate [ cbs committed-burst-size ] |
必选 |
本系列交换机的流量监管功能通过QoS策略方式实现,相关显示和维护的命令请参见2.2.5 QoS策略显示和维护。
在完成上述配置后,在任意视图下执行display命令可以显示配置后流量整形/端口限速的运行情况,通过查看显示信息验证配置的效果。
表4-4 流量监管/流量整形/端口限速显示和维护
操作 |
命令 |
显示流量整形配置运行信息 |
display qos gts interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ] |
显示接口的LR配置和统计信息 |
display qos lr interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ] |
· 设备Device A通过端口GigabitEthernet1/0/3和设备Device B的端口GigabitEthernet1/0/1互连
· Server、Host A、Host B可经由Device A和Device B访问Internet
要求在设备Device A上对端口GigabitEthernet1/0/1接收到的源自Server和Host A的报文流分别实施流量控制如下:
· 来自Server的报文流量约束为1024kbps,流量小于1024kbps时可以正常发送,流量超过1024kbps时则将违规报文的DSCP优先级设置为0后进行发送;
· 来自Host A的报文流量约束为256kbps,流量小于256kbps时可以正常发送,流量超过256kbps时则丢弃违规报文;
对设备Device B的GigabitEthernet1/0/1和GigabitEthernet1/0/2接口收发报文有如下要求:
· Device B的GigabitEthernet1/0/1端口接收报文的总流量限制为2048kbps,如果超过流量限制则将违规报文丢弃;
· 经由Device B的GigabitEthernet1/0/2端口进入Internet的HTTP报文流量限制为1024kbps,如果超过流量限制则将违规报文丢弃。
(1) 配置设备Device A:
# 配置ACL2001和2002,分别匹配来源于Server和Host A的报文流。
<DeviceA> system-view
[DeviceA] acl number 2001
[DeviceA-acl-basic-2001] rule permit source 1.1.1.1 0
[DeviceA-acl-basic-2001] quit
[DeviceA] acl number 2002
[DeviceA-acl-basic-2002] rule permit source 1.1.1.2 0
[DeviceA-acl-basic-2002] quit
# 创建流分类server,匹配规则为ACL 2001;创建流分类host,匹配规则为ACL 2002。
[DeviceA] traffic classifier server
[DeviceA-classifier-server] if-match acl 2001
[DeviceA-classifier-server] quit
[DeviceA] traffic classifier host
[DeviceA-classifier-host] if-match acl 2002
[DeviceA-classifier-host] quit
# 创建流行为server,动作为流量监管,cir为1024kbps,对超出限制的报文(红色报文)将其DSCP优先级设置为0后发送。
[DeviceA] traffic behavior server
[DeviceA-behavior-server] car cir 1024 red remark-dscp-pass 0
[DeviceA-behavior-server] quit
# 创建流行为host,动作为流量监管,cir为256kbps,由于默认对红色报文的处理方式就是丢弃,因此无需配置。
[DeviceA] traffic behavior host
[DeviceA-behavior-host] car cir 256
[DeviceA-behavior-host] quit
# 创建QoS策略,命名为car,将流分类server和流行为server进行关联;将流分类host和流行为host进行关联。
[DeviceA] qos policy car
[DeviceA-qospolicy-car] classifier server behavior server
[DeviceA-qospolicy-car] classifier host behavior host
[DeviceA-qospolicy-car] quit
# 将QoS策略car应用到端口GigabitEthernet1/0/1的入方向上。
[DeviceA] interface GigabitEthernet 1/0/1
[DeviceA-GigabitEthernet1/0/1] qos apply policy car inbound
(2) 配置设备Device B:
# 配置高级ACL3001,匹配HTTP报文。
<DeviceB> system-view
[DeviceB] acl number 3001
[DeviceB-acl-adv-3001] rule permit tcp destination-port eq 80
[DeviceB-acl-adv-3001] quit
# 创建流分类http,匹配ACL 3001。
[DeviceB] traffic classifier http
[DeviceB-classifier-http] if-match acl 3001
[DeviceB-classifier-http] quit
# 创建流分类class,匹配所有报文。
[DeviceB] traffic classifier class
[DeviceB-classifier-class] if-match any
[DeviceB-classifier-class] quit
# 创建流行为car_inbound,动作为流量监管,cir为2048kbps,由于默认对红色报文的处理方式就是丢弃,因此无需配置。
[DeviceB] traffic behavior car_inbound
[DeviceB-behavior-car_inbound] car cir 2048
[DeviceB-behavior-car_inbound] quit
# 创建流行为car_outbound,动作为流量监管,cir为1024kbps。
[DeviceB] traffic behavior car_outbound
[DeviceB-behavior-car_outbound] car cir 1024
[DeviceB-behavior-car_outbound] quit
# 创建QoS策略,命名为car_inbound,将流分类class和流行为car_inbound进行关联。
[DeviceB] qos policy car_inbound
[DeviceB-qospolicy-car_inbound] classifier class behavior car_inbound
[DeviceB-qospolicy-car_inbound] quit
# 创建QoS策略,命名为car_outbound,将流分类http和流行为car_outbound进行关联。
[DeviceB] qos policy car_outbound
[DeviceB-qospolicy-car_outbound] classifier http behavior car_outbound
[DeviceB-qospolicy-car_outbound] quit
# 将QoS策略car_inbound应用到端口GigabitEthernet1/0/1的入方向上。
[DeviceB] interface GigabitEthernet 1/0/1
[DeviceB-GigabitEthernet1/0/1]qos apply policy car_inbound inbound
# 将QoS策略car_outbound应用到端口GigabitEthernet1/0/2的入方向上。
[DeviceB] interface GigabitEthernet 1/0/2
[DeviceB-GigabitEthernet1/0/2]qos apply policy car_outbound outbound
所谓拥塞,是指当前供给资源相对于正常转发处理需要资源的不足,从而导致服务质量下降的一种现象。
在复杂的Internet分组交换环境下,拥塞极为常见。以下图中的两种情况为例:
图5-1 流量拥塞示意图
拥塞有可能会引发一系列的负面影响:
· 拥塞增加了报文传输的延迟和抖动,可能会引起报文重传,从而导致更多的拥塞产生。
· 拥塞使网络的有效吞吐率降低,造成网络资源的利用率降低。
· 拥塞加剧会耗费大量的网络资源(特别是存储资源),不合理的资源分配甚至可能导致系统陷入资源死锁而崩溃。
在分组交换以及多用户业务并存的复杂环境下,拥塞又是不可避免的,因此必须采用适当的方法来解决拥塞。
拥塞管理的中心内容就是当拥塞发生时如何制定一个资源的调度策略,以决定报文转发的处理次序。拥塞管理的处理包括队列的创建、报文的分类、将报文送入不同的队列、队列调度等。
对于拥塞管理,一般采用队列技术,使用一个队列算法对流量进行分类,之后用某种优先级别算法将这些流量发送出去。每种队列算法都是用以解决特定的网络流量问题,并对带宽资源的分配、延迟、抖动等有着十分重要的影响。
队列调度对不同优先级的报文进行分级处理,优先级高的会得到优先发送。这里介绍几种常用的队列:严格优先级SP(Strict-Priority)队列、加权轮询WRR(Weighted Round Robin)队列、加权公平队列(Weighted Fair Queuing)、SP+WRR和SP+WFQ队列。
图5-2 SP队列示意图
SP队列是针对关键业务类型应用设计的。关键业务有一个重要的特点,即在拥塞发生时要求优先获得服务以减小响应的延迟。以图5-2为例,优先队列将端口的8个输出队列分成8类,依次为7、6、5、4、3、2、1、0队列,它们的优先级依次降低。
在队列调度时,SP严格按照优先级从高到低的次序优先发送较高优先级队列中的分组,当较高优先级队列为空时,再发送较低优先级队列中的分组。这样,将关键业务的分组放入较高优先级的队列,将非关键业务的分组放入较低优先级的队列,可以保证关键业务的分组被优先传送,非关键业务的分组在处理关键业务数据的空闲间隙被传送。
SP的缺点是:拥塞发生时,如果较高优先级队列中长时间有分组存在,那么低优先级队列中的报文将一直得不到服务。
图5-3 WRR队列示意图
WRR队列在队列之间进行轮流调度,保证每个队列都得到一定的服务时间。以端口有8个输出队列为例,WRR可为每个队列配置一个加权值(依次为w7、w6、w5、w4、w3、w2、w1、w0),加权值表示获取资源的比重。
本系列交换机可以根据每次轮询调度的字节数或者报文个数来体现某个队列的调度权重,即使用字节数或报文个数作为调度单位。
以使用字节数为调度单位的WRR队列为例,如一个1000Mbps的端口,配置它的WRR队列的加权值为5、5、3、3、1、1、1、1(依次对应w7、w6、w5、w4、w3、w2、w1、w0),这样可以保证最低优先级队列至少获得50Mbps的带宽,避免了采用SP调度时低优先级队列中的报文可能长时间得不到服务的缺点。
WRR队列还有一个优点是,虽然多个队列的调度是轮询进行的,但对每个队列不是固定地分配服务时间片——如果某个队列为空,那么马上换到下一个队列调度,这样带宽资源可以得到充分的利用。
图5-4 WFQ队列
WFQ和WRR队列调度算法类似,在实际使用中可以与WRR相互替换。
WFQ与WRR相比,最主要的区别是WFQ可以通过最小带宽保证机制与WFQ进行配合,具体实现如下:
· 通过配置最小带宽保证值,确保WFQ中每一个队列都拥有最小保证带宽。
· 可分配带宽(可分配带宽 = 总带宽 - 各队列最小保证带宽)按照各队列权重进行分配。
例如:端口的总带宽为10M、端口中当前共有8个队列,它们的权重分别为1、1、1、1、3、3、5、5;每个流的最小带宽保证均为128kbps。
· 可分配带宽=10M-(128k×8) = 9M。
· 可分配带宽总配额为所有权重的和。即:1+1+1+1+3+3+5+5 = 20。
· 每个流所占可分配带宽比例为:自身权重/所有队列权重的和。即每个流可得的可分配带宽比分别为:1/20、1/20、1/20、1/20、3/20、3/20、5/20、5/20。
· 最终每个队列得到的带宽=最小保证带宽+该队列从可分配带宽中分到的带宽。
用户可以根据需要配置端口上的部分队列使用SP队列调度,部分队列使用WRR队列调度,通过将端口上的队列分别加入SP调度组和WRR调度组(即group 1),实现SP+WRR的调度功能。在队列调度时,系统会优先保证SP调度组内的队列调度,当SP调度组内的队列中没有报文发送时,才会调度WRR调度组内的队列。SP调度组内各个队列执行严格优先级调度方式,WRR调度组内各个队列执行加权轮询调度方式。
SP+WFQ队列与SP+WRR队列的配置方式基本相同,即将部分队列加入SP调度组,另外的队列加入WFQ调度组。在进行队列调度时,首先调度WFQ组的队列中满足WFQ最小保证带宽的流量,然后按SP方式对SP组中的队列进行调度,最后再按WFQ组中各队列的调度权重进行轮询调度。
表5-1 拥塞管理配置任务简介
配置任务 |
说明 |
详细配置 |
|
拥塞管理配置 |
配置SP队列 |
选择其中一种进行配置 |
|
配置WRR队列 |
|||
配置WFQ队列 |
|||
配置SP+WRR队列 |
|||
配置SP+WFQ队列 |
|||
显示端口队列统计信息 |
可选 |
表5-2 SP队列配置过程
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
配置SP队列 |
qos sp |
必选 缺省情况下,端口使用WRR队列进行调度 |
|
显示SP队列 |
display qos sp interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ] |
可选 display命令可以在任意视图下执行 |
(1) 组网需求
配置GigabitEthernet1/0/1采用SP队列。
(2) 配置步骤
# 进入系统视图
<Sysname> system-view
# 配置GigabitEthernet1/0/1的SP队列。
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos sp
表5-3 WRR队列配置过程
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
使能端口的WRR队列 |
qos wrr [ byte-count | weight ] |
可选 缺省情况下,端口使用WRR队列进行调度 |
|
配置WRR队列的调度权重 |
qos wrr queue-id group group-id byte-count schedule-value |
可选 请根据使能WRR队列时使用的调度权重选择二者之一进行配置 如果在端口上开启了WRR队列,缺省情况下使用报文个数作为调度权重,各队列的权重分别为1、2、3、4、5、9、13、15 |
|
qos wrr queue-id group group-id weight schedule-value |
|||
显示WRR队列的配置 |
display qos wrr interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ] |
可选 display命令可以在任意视图下执行 |
在配置WRR队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WRR时使用的调度权重保持一致,否则将无法正常配置。
· 配置端口GigabitEthernet1/0/1的队列为WRR队列,使用报文个数作为调度权重。
· 配置所有队列均属于为WRR分组,权重分别为1、2、4、6、8、10、12、14。
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置端口GigabitEthernet 1/0/1使用WRR队列调度算法。
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wrr weight
[Sysname-GigabitEthernet1/0/1] qos wrr 0 group 1 weight 1
[Sysname-GigabitEthernet1/0/1] qos wrr 1 group 1 weight 2
[Sysname-GigabitEthernet1/0/1] qos wrr 2 group 1 weight 4
[Sysname-GigabitEthernet1/0/1] qos wrr 3 group 1 weight 6
[Sysname-GigabitEthernet1/0/1] qos wrr 4 group 1 weight 8
[Sysname-GigabitEthernet1/0/1] qos wrr 5 group 1 weight 10
[Sysname-GigabitEthernet1/0/1] qos wrr 6 group 1 weight 12
[Sysname-GigabitEthernet1/0/1] qos wrr 7 group 1 weight 14
S5120-28SC-HI和S5120-52SC-HI设备不支持WFQ队列。
表5-4 WFQ队列配置过程
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
使能WFQ队列,并选择使用字节数或报文个数作为调度权重 |
qos wfq [ byte-count | weight ] |
必选 缺省情况下,端口使用WRR队列进行调度 |
|
配置WFQ队列的调度权重值 |
qos wfq queue-id group group-id byte-count schedule-value |
请根据使能WFQ队列时使用的调度权重选择二者之一进行配置 如果在端口上开启了WFQ队列,缺省情况下使用字节数作为调度权重,各队列的调度权重值均为1 |
|
qos wfq queue-id group group-id weight schedule-value |
|||
配置WFQ队列的最小保证带宽值 |
qos bandwidth queue queue-id min bandwidth-value |
可选 缺省情况下,各队列的最小保证带宽值均为64Kbps |
|
显示WFQ队列配置 |
display qos wfq interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ] |
可选 display命令可以在任意视图下执行 |
在配置WFQ队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WFQ时使用的调度权重保持一致,否则将无法正常配置。
(1) 组网需求
配置端口GigabitEthernet1/0/1上的队列为WFQ队列,其中队列1、3、4、5、6的调度权重值分别为2、5、10、10、10。
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置GigabitEthernet1/0/1的WFQ队列。
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wfq
[Sysname-GigabitEthernet1/0/1] qos wfq 1 weight 2
[Sysname-GigabitEthernet1/0/1] qos wfq 3 weight 5
[Sysname-GigabitEthernet1/0/1] qos wfq 4 weight 10
[Sysname-GigabitEthernet1/0/1] qos wfq 5 weight 10
[Sysname-GigabitEthernet1/0/1] qos wfq 6 weight 10
表5-5 配置SP+WRR队列
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
配置端口使用WRR队列 |
qos wrr [ byte-count | weight ] |
可选 缺省情况下,所有端口均使用WRR队列 |
|
将部分队列加入SP调度组 |
qos wrr queue-id group sp |
必选 缺省情况下,当端口使用WRR队列时,所有队列均处于WRR调度组中 |
|
将部分队列加入WRR调度组 |
qos wrr queue-id group group-id { weight | byte-count } schedule-value |
必选 如果在端口上开启了WRR队列,缺省情况下使用报文个数作为调度权重,队列0~7的权重分别为1、2、3、4、5、9、13、15 |
在配置WRR队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WRR时使用的调度权重保持一致,否则将无法正常配置。
(1) 组网需求
· 配置端口GigabitEthernet 1/0/1使用SP+WRR队列调度算法,使用报文个数作为WRR队列的调度权重
· 配置端口GigabitEthernet 1/0/1上的0、1、2、3队列属于SP调度组
· 配置端口GigabitEthernet 1/0/1上的4、5、6、7队列属于WRR调度组,权重分别为2、4、6、8。
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置端口GigabitEthernet 1/0/1使用SP+WRR队列调度算法。
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wrr weight
[Sysname-GigabitEthernet1/0/1] qos wrr 0 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 1 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 2 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 3 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 4 group 1 weight 2
[Sysname-GigabitEthernet1/0/1] qos wrr 5 group 1 weight 4
[Sysname-GigabitEthernet1/0/1] qos wrr 6 group 1 weight 6
[Sysname-GigabitEthernet1/0/1] qos wrr 7 group 1 weight 8
S5120-28SC-HI和S5120-52SC-HI设备不支持SP+WFQ队列。
表5-6 配置SP+WFQ队列
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
使能WFQ队列,并选择使用字节数或报文个数作为调度权重 |
qos wfq [ byte-count | weight ] |
必选 缺省情况下,端口使用WRR队列进行调度 |
|
将部分队列加入SP调度组 |
qos wfq queue-id group sp |
必选 缺省情况下,当端口使用WFQ队列时,所有队列均处于WFQ调度组中 |
|
将部分队列加入WFQ调度组 |
qos wfq queue-id group group-id { weight | byte-count } schedule-value |
必选 如果在端口上开启了WFQ队列,缺省情况下使用字节数作为调度权重,各队列的调度权重值均为1 |
|
配置WFQ队列的最小保证带宽值 |
qos bandwidth queue queue-id min bandwidth-value |
可选 缺省情况下,各队列的最小保证带宽值均为64Kbps |
在配置WFQ队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WFQ时使用的调度权重保持一致,否则将无法正常配置。
(1) 组网需求
· 配置端口GigabitEthernet 1/0/1使用SP+WFQ队列调度算法,其中WFQ的调度权重为报文个数
· 配置端口GigabitEthernet 1/0/1上的0、1、2、3队列属于SP调度组
· 配置端口GigabitEthernet 1/0/1上的4、5、6、7队列属于WFQ调度组,权重分别为2、4、6、8,这四个队列的最小保证带宽值均为128Kbps
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置端口GigabitEthernet 1/0/1使用SP+WFQ队列调度算法。
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wfq weight
[Sysname-GigabitEthernet1/0/1] qos wfq 0 group sp
[Sysname-GigabitEthernet1/0/1] qos wfq 1 group sp
[Sysname-GigabitEthernet1/0/1] qos wfq 2 group sp
[Sysname-GigabitEthernet1/0/1] qos wfq 3 group sp
[Sysname-GigabitEthernet1/0/1] qos wfq 4 group 1 weight 2
[Sysname-GigabitEthernet1/0/1] qos bandwidth queue 4 min 128
[Sysname-GigabitEthernet1/0/1] qos wfq 5 group 1 weight 4
[Sysname-GigabitEthernet1/0/1] qos bandwidth queue 5 min 128
[Sysname-GigabitEthernet1/0/1] qos wfq 6 group 1 weight 6
[Sysname-GigabitEthernet1/0/1] qos bandwidth queue 6 min 128
[Sysname-GigabitEthernet1/0/1] qos wfq 7 group 1 weight 8
[Sysname-GigabitEthernet1/0/1] qos bandwidth queue 7 min 128
通过查看端口的队列统计信息,您可以了解指定端口或全部端口的队列工作状态,包括曾经在队列中进行缓存的报文数量、以及队列中已发送和被丢弃的报文数量。
表5-7 显示端口队列统计信息
操作 |
命令 |
说明 |
显示端口队列统计信息 |
display qos queue-statistics interface [ interface-type interface-number ] [ outbound ] [ | { begin | exclude | include } regular-expression ] |
本命令可在任意视图下执行 |
过度的拥塞会对网络资源造成极大危害,必须采取某种措施加以解除。拥塞避免(Congestion Avoidance)是一种流量控制机制,它通过监视网络资源(如队列或内存缓冲区)的使用情况,在拥塞产生或有加剧的趋势时主动丢弃报文,通过调整网络的流量来解除网络过载。
与端到端的流量控制相比,这里的流量控制具有更广泛的意义,它影响到设备中更多的业务流的负载。设备在丢弃报文时,需要与源端的流量控制动作(比如TCP流量控制)相配合,调整网络的流量到一个合理的负载状态。丢包策略和源端流控机制有效的组合,可以使网络的吞吐量和利用效率最大化,并且使报文丢弃和延迟最小化。
传统的丢包策略采用尾部丢弃(Tail-Drop)的方法。当队列的长度达到最大值后,所有新到来的报文都将被丢弃。
这种丢弃策略会引发TCP全局同步现象:当队列同时丢弃多个TCP连接的报文时,将造成多个TCP连接同时进入拥塞避免和慢启动状态以降低并调整流量,而后又会在某个时间同时出现流量高峰。如此反复,使网络流量忽大忽小,网络不停震荡。
为避免TCP全局同步现象,可使用RED(Random Early Detection,随机早期检测)或WRED(Weighted Random Early Detection,加权随机早期检测)。
RED和WRED通过随机丢弃报文避免了TCP的全局同步现象,使得当某个TCP连接的报文被丢弃、开始减速发送的时候,其他的TCP连接仍然有较高的发送速度。这样,无论什么时候,总有TCP连接在进行较快的发送,提高了线路带宽的利用率。
在RED类算法中,为每个队列都设定上限和下限,对队列中的报文进行如下处理:
· 当队列的长度小于下限时,不丢弃报文;
· 当队列的长度超过上限时,丢弃所有到来的报文;
· 当队列的长度在上限和下限之间时,开始按用户配置的丢弃概率随机丢弃到来的报文。
与RED不同,WRED生成的随机数是基于优先权的,它引入IP优先权区别丢弃策略,考虑了高优先权报文的利益,使其被丢弃的概率相对较小。
直接采用队列的长度和上限、下限比较并进行丢弃,将会对突发性的数据流造成不公正的待遇,不利于数据流的传输。WRED采用平均队列和设置的队列上限、下限比较来确定丢弃的概率。
队列平均长度既反映了队列的变化趋势,又对队列长度的突发变化不敏感,避免了对突发性数据流的不公正待遇。计算队列平均长度的公式为:平均队列长度=上一时刻平均队列长度+(当前队列长度 - 上一时刻平均队列长度) / 2n。其中n可以通过命令queue weighting-constant进行配置。
本系列交换机的WRED功能采用WRED表的配置方式,即在系统视图下配置WRED表,然后在端口上应用WRED表。
在进行WRED配置时,需要事先确定如下参数:
· 队列上限和下限:当平均队列长度小于下限时,不丢弃报文。当平均队列长度在上限和下限之间时,设备按用户设置的丢弃概率开始随机丢弃报文。当平均队列长度超过上限时,丢弃所有到来的报文。
· 丢弃优先级:在进行报文丢弃时参考的参数,0对应绿色报文、1对应黄色报文、2对应红色报文,红色报文将被优先丢弃。
· 计算平均队列长度的指数:指数越大,计算队列平均长度时对队列的实时变化越不敏感。
· 丢弃概率:以百分数的形式表示丢弃报文的概率,取值越大,报文被丢弃的机率越大。
WRED表是一个基于队列的表,发生拥塞时设备将根据报文所在队列进行随机丢弃。
同一个表可以同时在多个端口应用。WRED表被应用到端口后,用户可以对WRED表的取值进行修改,但是不能删除该WRED表。
表6-1 WRED表的配置和应用过程
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
配置WRED表 |
qos wred queue table table-name |
- |
|
配置计算平均队列长度的指数 |
queue queue-id weighting-constant exponent |
可选 缺省情况下,该指数取值为9 |
|
配置WRED表的其它参数 |
queue queue-id [ drop-level drop-level ] low-limit low-limit high-limit high-limit [ discard-probability discard-prob ] |
可选 缺省情况下,low-limit为100,high-limit为1000,discard-prob为10 |
|
进入端口视图或端口组视图 |
进入端口视图 |
interface interface-type interface-number |
二者必选其一 进入端口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效 |
进入端口组视图 |
port-group manual port-group-name |
||
在端口应用WRED表 |
qos wred apply table-name |
必选 缺省情况下,端口上没有应用WRED表 |
配置WRED表,对队列1中的黄色报文,丢弃队列上限为2000,下限为500,丢弃概率为百分之50,并将此WRED表应用到端口GigabitEthernet 1/0/1上。
# 进入系统视图
<Sysname> system-view
# 根据组网需求创建WRED表并配置相应的参数。
[Sysname] qos wred queue table queue-table1
[Sysname-wred-table-queue-table1] queue 1 drop-level 1 low-limit 500 high-limit 2000 discard-probability 50
[Sysname-wred-table-queue-table1] quit
# 进入端口视图。
[Sysname] interface gigabitethernet 1/0/1
# 在端口上应用WRED表。
[Sysname-GigabitEthernet1/0/1] qos wred apply queue-table1
在完成上述配置后,在任意视图下执行display命令可以显示配置后WRED的运行情况,通过查看显示信息验证配置的效果。
表6-2 WRED显示和维护
操作 |
命令 |
显示端口的WRED配置情况和统计信息 |
display qos wred interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ] |
显示WRED表配置情况 |
display qos wred table [ table-name ] [ | { begin | exclude | include } regular-expression ] |
流量过滤就是对符合流分类的流进行过滤的动作。
例如,可以根据网络的实际情况禁止从某个源IP地址发送的报文通过。
用户也可以选择通过在端口应用ACL的方式来实现流量过滤功能,详细的介绍和配置请参见“ACL和QoS配置指导”中的“ACL配置”。
表7-1 配置流量过滤
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义类并进入类视图 |
traffic classifier tcl-name [ operator { and | or } ] |
- |
|
定义匹配数据包的规则 |
if-match match-criteria |
- |
|
退出类视图 |
quit |
- |
|
定义一个流行为并进入流行为视图 |
traffic behavior behavior-name |
- |
|
配置流量过滤动作 |
filter { deny | permit } |
必选 deny表示丢弃数据包;permit表示允许数据包通过 |
|
退出流行为视图 |
quit |
- |
|
定义策略并进入策略视图 |
qos policy policy-name |
- |
|
在策略中为类指定采用的流行为 |
classifier tcl-name behavior behavior-name |
- |
|
退出策略视图 |
quit |
- |
|
应用QoS策略 |
基于端口 |
- |
|
基于上线用户 |
- |
||
基于VLAN |
- |
||
基于全局 |
- |
||
基于控制平面 |
- |
||
显示流量过滤的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ] |
可选 display命令可以在任意视图下执行 |
如果配置了filter deny命令,则在该流行为视图下配置的其他流行为(除流量统计和流镜像)都不会生效。
Host通过端口GigabitEthernet1/0/1接入设备Device。
配置流量过滤功能,对端口GigabitEthernet1/0/1接收的源端口号等于21的TCP报文进行丢弃。
图7-1 配置流量过滤组网图
# 定义高级ACL 3000,匹配源端口号等于21的数据流。
<DeviceA> system-view
[DeviceA] acl number 3000
[DeviceA-acl-adv-3000] rule 0 permit tcp source-port eq 21
[DeviceA-acl-adv-3000] quit
# 定义类classifier_1,匹配高级ACL 3000。
[DeviceA] traffic classifier classifier_1
[DeviceA-classifier-classifier_1] if-match acl 3000
[DeviceA-classifier-classifier_1] quit
# 定义流行为behavior_1,动作为流量过滤(deny),对数据包进行丢弃。
[DeviceA] traffic behavior behavior_1
[DeviceA-behavior-behavior_1] filter deny
[DeviceA-behavior-behavior_1] quit
# 定义策略policy,为类classifier_1指定流行为behavior_1。
[DeviceA] qos policy policy
[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1
[DeviceA-qospolicy-policy] quit
# 将策略policy应用到端口GigabitEthernet1/0/1的入方向上。
[DeviceA] interface gigabitethernet 1/0/1
[DeviceA-GigabitEthernet1/0/1] qos apply policy policy inbound
重标记可以和优先级映射功能配合使用,具体请参见优先级映射章节3.5.2 。
重标记是将报文的优先级或者标志位进行设置,重新定义流量的优先级等。例如,对于IP报文来说,所谓重标记就是对IP报文中的IP优先级或DSCP值进行重新设置,改变IP报文在网络传输中状态。
重标记动作的配置,可以通过与类关联,将原来报文的优先级或标志位重新进行标记。
报文的颜色用来表示设备对报文传输优先等级的评估结果,本系列交换机可以根据以下两种方式为报文标记颜色:
· 流量监管功能
· 映射丢弃优先级
流量监管是一种常用的流量控制技术,它可以通过令牌桶机制来对设备接收或发送的流量进行评估,并根据评估结果对报文标记不同的颜色。用户通过为不同颜色的报文配置不同的流控策略,来实现对不同流量的差异化服务,从而保证网络资源的有效利用。
本系列交换机支持双令牌桶评估方式(C桶和E桶),可以根据令牌桶中令牌的使用情况来标记报文的颜色:
· 如果C桶有足够的令牌,报文被标记为green,即绿色报文;
· 如果C桶令牌不足,但E桶有足够的令牌,报文被标记为yellow,即黄色报文;
· 如果C桶和E桶都没有足够的令牌,报文被标记为red,即红色报文。
本系列交换机支持使用普通CAR以及聚合CAR两种流量监管功能为报文标记颜色,有关这两种功能的详细介绍和配置方法,请参见流量监管、流量整形和端口限速配置以及10.2 配置聚合CAR。
在没有配置流量监管功能的情况下,本交换机根据报文的802.1p优先级以及dot1p-dp映射表,映射出报文的丢弃优先级,并根据丢弃优先级为报文标记颜色。丢弃优先级0对应绿色报文、1对应黄色报文、2对应红色报文。
关于优先级映射表以及调整优先级映射关系的详细介绍和配置,请参见优先级映射配置。
在得到流量监管的评估结果之后,本系列交换机可以为不同颜色的报文重新标记各种优先级值,包括DSCP优先级、802.1p优先级和本地优先级。您可以在流量监管动作中指定对不同颜色的报文采取的重标记动作,来重标记报文的优先级。
在使用丢弃优先级为报文标记颜色的情况下,您可以通过在流行为中创建重标记动作,为不同颜色的报文标记各种优先级值,包括DSCP优先级、802.1p优先级和本地优先级。
在一个流行为中,流量监管动作不能与重标记优先级(包括本地优先级、丢弃优先级、802.1p优先级、DSCP优先级、IP优先级)的动作同时配置,否则会导致QoS策略不能正常应用。
表8-1 配置重标记
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义类并进入类视图 |
traffic classifier tcl-name [ operator { and | or } ] |
- |
|
定义匹配数据包的规则 |
if-match match-criteria |
- |
|
退出类视图 |
quit |
- |
|
定义一个流行为并进入流行为视图 |
traffic behavior behavior-name |
- |
|
配置标记报文的DSCP值 |
remark [ green | red | yellow ] dscp dscp-value |
可选 |
|
配置标记报文的802.1p优先级 |
remark [ green | red | yellow ] dot1p 8021p |
可选 |
|
配置内外层标签优先级复制功能 |
remark dot1p customer-dot1p-trust |
可选 |
|
配置标记报文的丢弃优先级 |
remark drop-precedence drop-precedence-value |
可选 仅应用在出方向 |
|
配置标记报文的IP优先级值 |
remark ip-precedence ip-precedence-value |
可选 |
|
配置标记报文的本地优先级 |
remark [ green | red | yellow ] local-precedence local-precedence |
可选 |
|
配置标记报文的qos-local-id值 |
remark qos-local-id local-id-value |
可选 qos-local-id是设备为报文重新标记的一种属性,用户可以根据不同的需求给报文标记不同的qos-local-id。标记qos-local-id主要用于对匹配多个流分类的报文进行重分类,再对这个重分类进行流行为动作,以达到对多种报文进行同一种处理方式的效果 |
|
退出流行为视图 |
quit |
- |
|
定义策略并进入策略视图 |
qos policy policy-name |
- |
|
在策略中为类指定采用的流行为 |
classifier tcl-name behavior behavior-name |
- |
|
退出策略视图 |
quit |
- |
|
应用QoS策略 |
基于端口 |
- |
|
基于上线用户 |
- |
||
基于VLAN |
- |
||
基于全局 |
- |
||
基于控制平面 |
- |
||
显示重标记的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ] |
可选 display命令可以在任意视图下执行 |
需要注意的是,应用重标记的QoS策略时inbound和outbound方向的支持情况如下表所示。
表8-2 inbound和outbound方向的支持情况
动作 |
inbound方向 |
outbound方向 |
标记报文的802.1p优先级 |
支持 |
支持 |
标记报文的丢弃优先级 |
支持 |
不支持 |
标记报文的DSCP优先级 |
支持 |
支持 |
标记报文的IP优先级 |
支持 |
支持 |
标记报文的本地优先级 |
支持 |
不支持 |
标记报文的qos-local-id值 |
支持 |
不支持 |
公司企业网通过Device实现互连。网络环境描述如下:
· Host A和Host B通过端口GigabitEthernet1/0/1接入Device;
· 数据库服务器、邮件服务器和文件服务器通过端口GigabitEthernet1/0/2接入Device。
通过配置重标记功能,Device上实现如下需求:
· 优先处理Host A和Host B访问数据库服务器的报文;
· 其次处理Host A和Host B访问邮件服务器的报文;
· 最后处理Host A和Host B访问文件服务器的报文。
图8-1 配置重标记组网图
# 定义高级ACL 3000,对目的IP地址为192.168.0.1的报文进行分类。
<Device> system-view
[Device] acl number 3000
[Device-acl-adv-3000] rule permit ip destination 192.168.0.1 0
[Device-acl-adv-3000] quit
# 定义高级ACL 3001,对目的IP地址为192.168.0.2的报文进行分类。
[Device] acl number 3001
[Device-acl-adv-3001] rule permit ip destination 192.168.0.2 0
[Device-acl-adv-3001] quit
# 定义高级ACL 3002,对目的IP地址为192.168.0.3的报文进行分类。
[Device] acl number 3002
[Device-acl-adv-3002] rule permit ip destination 192.168.0.3 0
[Device-acl-adv-3002] quit
# 定义类classifier_dbserver,匹配高级ACL 3000。
[Device] traffic classifier classifier_dbserver
[Device-classifier-classifier_dbserver] if-match acl 3000
[Device-classifier-classifier_dbserver] quit
# 定义类classifier_mserver,匹配高级ACL 3001。
[Device] traffic classifier classifier_mserver
[Device-classifier-classifier_mserver] if-match acl 3001
[Device-classifier-classifier_mserver] quit
# 定义类classifier_fserver,匹配高级ACL 3002。
[Device] traffic classifier classifier_fserver
[Device-classifier-classifier_fserver] if-match acl 3002
[Device-classifier-classifier_fserver] quit
# 定义流行为behavior_dbserver,动作为重标记报文的本地优先级为4。
[Device] traffic behavior behavior_dbserver
[Device-behavior-behavior_dbserver] remark local-precedence 4
[Device-behavior-behavior_dbserver] quit
# 定义流行为behavior_mserver,动作为重标记报文的本地优先级为3。
[Device] traffic behavior behavior_mserver
[Device-behavior-behavior_mserver] remark local-precedence 3
[Device-behavior-behavior_mserver] quit
# 定义流行为behavior_fserver,动作为重标记报文的本地优先级为2。
[Device] traffic behavior behavior_fserver
[Device-behavior-behavior_fserver] remark local-precedence 2
[Device-behavior-behavior_fserver] quit
# 定义策略policy_server,为类指定流行为。
[Device] qos policy policy_server
[Device-qospolicy-policy_server] classifier classifier_dbserver behavior behavior_dbserver
[Device-qospolicy-policy_server] classifier classifier_mserver behavior behavior_mserver
[Device-qospolicy-policy_server] classifier classifier_fserver behavior behavior_fserver
[Device-qospolicy-policy_server] quit
# 将策略policy_server应用到端口GigabitEthernet1/0/1上。
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy policy_server inbound
[Device-GigabitEthernet1/0/1] quit
重标记qos-local-id功能主要用于将匹配多种分类条件的报文进行重分类,再对这个重分类进行流行为的情况。
例如:需要对源MAC地址为0001-0001-0001,或者源IP地址为1.1.1.1的这两种报文的总流量限速为128Kbps,如果采用匹配源MAC地址的分类和匹配源IP地址的流分类分别与流量监管的流行为进行关联的QoS策略配置方式,则最后的配置结果会是两种报文的限速分别为128Kbps,无法达到预期效果。
而通过使用qos-local-id就可以解决这个问题。首先将匹配源MAC地址和源IP地址的报文标记统一的qos-local-id,然后再以qos-local-id为新的分类条件,创建流量监管的动作,这样就可以对这两种报文的总流量进行限速。配置步骤如下:
# 创建ACL 2000,匹配源IP地址为1.1.1.1的报文。
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] rule permit source 1.1.1.1 0
[Sysname-acl-basic-2000] quit
# 创建流分类class_a,匹配源MAC地址为0001-0001-0001或源IP地址为1.1.1.1的报文。
<Sysname> system-view
[Sysname] traffic classifier class_a operator or
[Sysname-classifier-class_a] if-match source-mac 1-1-1
[Sysname-classifier-class_a] if-match acl 2000
[Sysname-classifier-class_a] quit
# 创建流行为behavior_a,对匹配class_a分类的报文将qos-local-id标记为100。
[Sysname] traffic behavior behavior_a
[Sysname-behavior-behavior_a] remark qos-local-id 100
[Sysname-behavior-behavior_a] quit
# 创建流分类class_b,匹配qos-local-id为100的报文。
[Sysname] traffic classifier class_b
[Sysname-classifier-class_b] if-match qos-local-id 100
[Sysname-classifier-class_b] quit
# 创建流行为behavior_b,对匹配class_b分类的报文限速为128Kbps。
[Sysname] traffic behavior behavior_b
[Sysname-behavior-behavior_b] car cir 128
[Sysname-behavior-behavior_b] quit
# 创建QoS策略car_policy,并将class_a和behavior_a进行关联,将class_b和behavior_b进行关联。
[Sysname] qos policy car_policy
[Sysname-qospolicy-car_policy] classifier class_a behavior behavior_a
[Sysname-qospolicy-car_policy] classifier class_b behavior behavior_b
将通过上面步骤创建的QoS策略应用到端口后,即可实现组网需求。
流量重定向就是将符合流分类的流重定向到其他地方进行处理。
目前支持的流量重定向包括以下几种:
· 重定向到CPU:对于需要CPU处理的报文,可以通过配置上送给CPU。
· 重定向到端口:对于收到需要由某个端口处理的报文时,可以通过配置重定向到此端口。只针对二层转发报文。
· 重定向到下一跳:对于收到需要某台下游设备处理的报文时,可以通过配置重定向到该下游设备。该方式可用于实现策略路由,有关策略路由的介绍,请参见“三层技术-IP路由配置指导”中的“策略路由配置”。
表9-1 配置流量重定向
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义类并进入类视图 |
traffic classifier tcl-name [ operator { and | or } ] |
- |
|
定义匹配数据包的规则 |
if-match match-criteria |
- |
|
退出类视图 |
quit |
- |
|
定义一个流行为并进入流行为视图 |
traffic behavior behavior-name |
必选 |
|
配置流量重定向动作 |
redirect { cpu | interface interface-type interface-number | next-hop { ipv4-add1 [ ipv4-add2 ] | ipv6-add1 [ interface-type interface-number ] [ ipv6-add2 [ interface-type interface-number ] ] } [ fail-action { discard | forward } ] } |
必选 |
|
退出流行为视图 |
quit |
- |
|
定义策略并进入策略视图 |
qos policy policy-name |
- |
|
在策略中为类指定采用的流行为 |
classifier tcl-name behavior behavior-name |
- |
|
退出策略视图 |
quit |
- |
|
应用QoS策略 |
基于端口 |
- |
|
基于VLAN |
- |
||
基于全局 |
- |
||
基于控制平面 |
- |
· 在配置重定向动作时,同一个流行为中重定向类型只能为重定向到CPU、重定向到接口、重定向到下一跳中的一种。
· 引用重定向动作的QoS策略只能应用到端口、VLAN或全局的入方向。
· 如果不配置重定向下一跳失败的处理动作,默认的处理动作是转发。
· 可以通过命令display traffic behavior user-defined查看流量重定向的相关配置信息。
网络环境描述如下:
· Device A通过两条链路与Device B连接,同时Device A和Device B各自连接其他的设备;
· Device A上的端口GigabitEthernet1/0/2和Device B上的端口GigabitEthernet1/0/2属于VLAN 200;
· Device A上的端口GigabitEthernet1/0/3和Device B上的端口GigabitEthernet1/0/3属于VLAN 201;
· Device A上VLAN 200虚接口的IP地址为200.1.1.1/24,VLAN 201虚接口的IP地址为201.1.1.1/24;
· Device B上VLAN 200虚接口的IP地址为200.1.1.2/24,VLAN 201虚接口的IP地址为201.1.1.2/24。
配置重定向至下一跳,实现策略路由功能,满足如下需求:
· 将Device A的端口GigabitEthernet1/0/1接收到的源IP地址为2.1.1.1的报文转发至200.1.1.2;
· 将Device A的端口GigabitEthernet1/0/1接收到的源IP地址为2.1.1.2的报文转发至201.1.1.2;
· 对于Device A的端口GigabitEthernet1/0/1接收到的其它报文,按照查找路由表的方式进行转发。
图9-1 配置重定向至下一跳组网图
# 定义基本ACL 2000,对源IP地址为2.1.1.1的报文进行分类。
<DeviceA> system-view
[DeviceA] acl number 2000
[DeviceA-acl-basic-2000] rule permit source 2.1.1.1 0
[DeviceA-acl-basic-2000] quit
# 定义基本ACL 2001,对源IP地址为2.1.1.2的报文进行分类。
[DeviceA] acl number 2001
[DeviceA-acl-basic-2001] rule permit source 2.1.1.2 0
[DeviceA-acl-basic-2001] quit
# 定义类classifier_1,匹配基本ACL 2000。
[DeviceA] traffic classifier classifier_1
[DeviceA-classifier-classifier_1] if-match acl 2000
[DeviceA-classifier-classifier_1] quit
# 定义类classifier_2,匹配基本ACL 2001。
[DeviceA] traffic classifier classifier_2
[DeviceA-classifier-classifier_2] if-match acl 2001
[DeviceA-classifier-classifier_2] quit
# 定义流行为behavior_1,动作为重定向至200.1.1.2。
[DeviceA] traffic behavior behavior_1
[DeviceA-behavior-behavior_1] redirect next-hop 200.1.1.2
[DeviceA-behavior-behavior_1] quit
# 定义流行为behavior_2,动作为重定向至201.1.1.2。
[DeviceA] traffic behavior behavior_2
[DeviceA-behavior-behavior_2] redirect next-hop 201.1.1.2
[DeviceA-behavior-behavior_2] quit
# 定义策略policy,为类classifier_1指定流行为behavior_1,为类classifier_2指定流行为behavior_2。
[DeviceA] qos policy policy
[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1
[DeviceA-qospolicy-policy] classifier classifier_2 behavior behavior_2
[DeviceA-qospolicy-policy] quit
# 将策略policy应用到端口GigabitEthernet1/0/1的入方向上。
[DeviceA] interface gigabitethernet 1/0/1
[DeviceA-GigabitEthernet1/0/1] qos apply policy policy inbound
全局CAR是在全局创建的一种策略,所有应用该策略的数据流将共同接受全局CAR的监管。
目前全局CAR支持聚合CAR和分层CAR两种。
聚合CAR是指能够对多个业务流使用同一个CAR进行流量监管,即如果多个端口应用同一聚合CAR,则这多个端口的流量之和必须在此聚合CAR设定的流量监管范围之内。
分层CAR是一种更灵活的流量监管策略,用户可以在为每个流单独配置CAR动作(或聚合CAR)的基础上,再通过分层CAR对多个流的流量总和进行限制。
分层CAR与普通CAR(或聚合CAR)的结合应用有两种模式:
· and:在该模式下,对于多条数据流应用同一个分层CAR,必须每条流满足各自的普通CAR(或聚合CAR)配置,同时各流量之和又满足分层CAR的配置,流量才能正常通过。and模式适用于严格限制流量带宽的环境,分层CAR的限速配置通常小于各流量自身CAR的限速值之和。例如对于Internet流量,可以使用普通CAR将数据流1和数据流2各自限速为128kbps,再使用分层CAR限制总流量为192kbps。当不存在数据流1时,数据流2可以用达到自身限速上限的速率访问Internet,如果存在数据流1,则两个数据流不能超过各自限速且总速率不能超过192kbps。
· or:在该模式下,对于多条数据流应用同一个分层CAR,只要每条流满足各自的普通CAR(或聚合CAR)配置或者各流量之和满足分层CAR配置,流量即可正常通过。or模式适用于保证高优先级业务带宽的环境,分层CAR的限速值通常等于或大于各流量自身的限速值之和。例如对于视频流量,使用普通CAR将数据流1和数据流2各自限速128kbps,再使用分层CAR限制总流量为512kbps,则当数据流1的流量不足128kbps时,即使数据流2的流量达到了384kbps,仍然可以正常通过。
两种模式可以结合起来使用,达到合理利用带宽的效果。例如,存在一条视频流和一条数据流,使用普通CAR将数据流限速1024kbps、视频流限速2048kbps。连接视频流接口采用or模式CAR限速3072kbps,因为可能存在多台视频设备同时上线出现的突发流量,当视频设备流量速率超出2048kbps时,如果总体流量资源仍有剩余(即数据流速率在1024kbps以内),这时视频流可以临时借用数据流的带宽;同时,连接数据流接口采用and模式CAR限速3072kbps,确保数据流量不能超出自身限速的1024kbps。
表10-1 配置聚合CAR
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置聚合CAR的各个参数 |
qos car car-name aggregative cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peek-information-rate ] [ green action ] [ yellow action ] [ red action ] |
必选 |
进入流行为视图 |
traffic behavior behavior-name |
必选 |
在流行为中引用聚合CAR |
car name car-name |
必选 |
显示配置的流行为信息 |
display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ] |
可选 display命令可以在任意视图下执行 |
显示指定聚合CAR的CAR配置和统计信息 |
display qos car name [ car-name ] [ | { begin | exclude | include } regular-expression ] |
在一个流行为中,引用聚合CAR的动作不能与重标记优先级(包括本地优先级、丢弃优先级、802.1p优先级、DSCP优先级、IP优先级)的动作同时配置,否则会导致QoS策略不能正常应用。
表10-2 配置分层CAR
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置分层CAR的各个参数 |
qos car car-name hierarchy cir committed-information-rate [ cbs committed-burst-size ] |
必选 |
进入流行为视图 |
traffic behavior behavior-name |
必选 |
在流行为中引用分层CAR(和聚合CAR配合使用) |
car name car-name hierarchy-car hierarchy-car-name [ mode { and | or } ] |
二者必选其一 |
在流行为中引用分层CAR(和普通CAR配合使用) |
car cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peak-information-rate ] [ green action ] [ yellow action ] [ red action ] hierarchy-car hierarchy-car-name [ mode { and | or } ] |
|
显示配置的流行为信息 |
display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ] |
可选 display命令可以在任意视图下执行 |
显示指定全局CAR的CAR配置和统计信息 |
display qos car name [ car-name ] [ | { begin | exclude | include } regular-expression ] |
在完成上述配置后,在任意视图下执行display命令可以显示配置后全局CAR的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除全局CAR统计信息。
表10-3 全局CAR显示和维护
操作 |
命令 |
显示全局CAR的配置和统计信息 |
display qos car name [ car-name ] [ | { begin | exclude | include } regular-expression ] |
清除全局CAR的统计信息 |
reset qos car name [ car-name ] |
通过配置聚合CAR,对端口GigabitEthernet1/0/1接收的VLAN10和VLAN100的报文流量之和进行限制,cir为2560,cbs为20000,对于红色报文,采取丢弃策略。
图10-1 聚合CAR配置举例组网图
# 按流量限制需求配置聚合CAR。
<Device> system-view
[Device] qos car aggcar-1 aggregative cir 2560 cbs 20000 red discard
# 配置流分类和流行为,对VLAN10的报文采用聚合CAR的限速配置。
[Device] traffic classifier 1
[Device-classifier-1] if-match service-vlan-id 10
[Device-classifier-1] quit
[Device] traffic behavior 1
[Device-behavior-1] car name aggcar-1
[Device-behavior-1] quit
# 配置流分类和流行为,对VLAN100的报文采用聚合CAR的限速配置。
[Device] traffic classifier 2
[Device-classifier-2] if-match service-vlan-id 100
[Device-classifier-2] quit
[Device] traffic behavior 2
[Device-behavior-2] car name aggcar-1
[Device-behavior-2] quit
# 配置QoS策略,将流分类与流行为进行绑定。
[Device] qos policy car
[Device-qospolicy-car] classifier 1 behavior 1
[Device-qospolicy-car] classifier 2 behavior 2
[Device-qospolicy-car] quit
# 将QoS策略应用到端口GigabitEthernet1/0/1的入方向。
[Device] interface GigabitEthernet 1/0/1
[Device-GigabitEthernet1/0/1]qos apply policy car inbound
对端口GigabitEthernet1/0/1和GigabitEthernet1/0/2接收的HTTP报文流量进行限速,要求每个端口接收到的HTTP报文速率不能超过192kbps。同时,使用分层CAR来限制这两个端口接收的HTTP总流量不能超过256kbps,丢弃超过流量上限的报文。
图10-2 and模式配置举例组网图
# 按流量限制需求配置分层CAR。
<Device> system-view
[Device] qos car http hierarchy cir 256 red discard
# 配置ACL 3000,匹配HTTP报文。
[Device] acl number 3000
[Device-acl-basic-3000] rule permit tcp destination-port eq 80
[Device-acl-basic-3000] quit
# 配置流分类和流行为,对HTTP报文进行CAR限速,并与分层CAR结合使用。
[Device] traffic classifier 1
[Device-classifier-1] if-match acl 3000
[Device-classifier-1] quit
[Device] traffic behavior 1
[Device-behavior-1] car cir 192 hierarchy-car http mode and
[Device-behavior-1] quit
# 配置QoS策略,将流分类与流行为进行绑定。
[Device] qos policy http
[Device-qospolicy-http] classifier 1 behavior 1
[Device-qospolicy-http] quit
# 将QoS策略应用到端口GigabitEthernet1/0/1和GigabitEthernet1/0/2的入方向。
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy http inbound
[Device-GigabitEthernet1/0/1] quit
[Device] interface gigabitethernet 1/0/2
[Device-GigabitEthernet1/0/2] qos apply policy http inbound
对端口GigabitEthernet1/0/1接收的来自192.168.0.2和192.168.0.3的视频报文流量进行限速,根据日常视频应用的流量速率,配置cir为256kbps。同时为保证可能出现的大流量视频应用能够顺利通过,使用分层CAR为视频报文限定总流量上限为640kbps,丢弃超出流量上限的报文。
图10-3 or模式配置举例组网图
# 按流量限制需求配置分层CAR。
<Device> system-view
[Device] qos car video hierarchy cir 640 red discard
# 配置流分类和流行为,对来自视讯终端(192.168.0.2)的报文进行普通CAR限速,并与分层CAR结合使用。
[Device] acl number 2000
[Device-acl-basic-2000] rule permit source 192.168.0.2 0.0.0.0
[Device-acl-basic-2000] quit
[Device] traffic classifier 1
[Device-classifier-1] if-match acl 2000
[Device-classifier-1] quit
[Device] traffic behavior 1
[Device-behavior-1] car cir 256 hierarchy-car video mode or
[Device-behavior-1] quit
# 配置流分类和流行为,对来自视讯终端(192.168.0.3)的报文进行普通CAR限速,并与分层CAR结合使用。
[Device] acl number 2001
[Device-acl-basic-2001] rule permit source 192.168.0.3 0.0.0.0
[Device-acl-basic-2001] quit
[Device] traffic classifier 2
[Device-classifier-2] if-match acl 2001
[Device-classifier-2] quit
[Device] traffic behavior 2
[Device-behavior-2] car cir 256 hierarchy-car video mode or
[Device-behavior-2] quit
# 配置QoS策略,将流分类与流行为进行绑定。
[Device] qos policy video
[Device-qospolicy-video] classifier 1 behavior 1
[Device-qospolicy-video] classifier 2 behavior 2
[Device-qospolicy-video] quit
# 将QoS策略应用到端口GigabitEthernet1/0/1的入方向。
[Device] interface gigabitethernet 1/0/1
[Device-GigabitEthernet1/0/1] qos apply policy video inbound
流量统计就是通过与类关联,对符合匹配规则的流进行统计,统计报文数或字节数。例如,可以统计从某个源IP地址发送的报文,然后管理员对统计信息进行分析,根据分析情况采取相应的措施。
表11-1 配置流量统计
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义类并进入类视图 |
traffic classifier tcl-name [ operator { and | or } ] |
- |
|
定义匹配数据包的规则 |
if-match match-criteria |
- |
|
退出类视图 |
quit |
- |
|
定义一个流行为并进入流行为视图 |
traffic behavior behavior-name |
必选 |
|
配置统计动作 |
accounting { byte | packet } |
必选 byte表示报文基于字节为单位进行统计;packet表示报文基于包为单位进行统计 |
|
退出流行为视图 |
quit |
- |
|
定义策略并进入策略视图 |
qos policy policy-name |
- |
|
在策略中为类指定采用的流行为 |
classifier tcl-name behavior behavior-name |
- |
|
退出策略视图 |
quit |
- |
|
应用QoS策略 |
基于端口 |
- |
|
基于VLAN |
- |
||
基于全局 |
- |
||
基于控制平面 |
- |
在完成上述配置后,用户可以根据QoS的应用范围在任意视图下执行display qos policy global、display qos policy interface或display qos vlan-policy命令来显示流量统计的情况,通过查看显示信息验证配置的效果。
用户网络描述如下:Host通过端口GigabitEthernet1/0/1接入设备Device A。
配置流量统计功能,对端口GigabitEthernet1/0/1接收的源IP地址为1.1.1.1/24的报文个数进行统计。
图11-1 配置流量统计组网图
# 定义基本ACL 2000,对源IP地址为1.1.1.1的报文进行分类。
<DeviceA> system-view
[DeviceA] acl number 2000
[DeviceA-acl-basic-2000] rule permit source 1.1.1.1 0
[DeviceA-acl-basic-2000] quit
# 定义类classifier_1,匹配基本ACL 2000。
[DeviceA] traffic classifier classifier_1
[DeviceA-classifier-classifier_1] if-match acl 2000
[DeviceA-classifier-classifier_1] quit
# 定义流行为behavior_1,动作为流量统计。
[DeviceA] traffic behavior behavior_1
[DeviceA-behavior-behavior_1] accounting packet
[DeviceA-behavior-behavior_1] quit
# 定义策略policy,为类classifier_1指定流行为behavior_1。
[DeviceA] qos policy policy
[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1
[DeviceA-qospolicy-policy] quit
# 将策略policy应用到端口GigabitEthernet1/0/1的入方向上。
[DeviceA] interface gigabitethernet 1/0/1
[DeviceA-GigabitEthernet1/0/1] qos apply policy policy inbound
[DeviceA-GigabitEthernet1/0/1] quit
# 查看配置后流量统计的情况。
[DeviceA] display qos policy interface gigabitethernet 1/0/1
Interface: GigabitEthernet1/0/1
Direction: Inbound
Policy: policy
Classifier: classifier_1
Operator: AND
Rule(s) : If-match acl 2000
Behavior: behavior_1
Accounting Enable:
28529 (Packets)
本系列交换机提供的数据缓冲区用来缓存从所有端口发送的报文,防止在出现突发流量时由于拥塞而产生的丢包现象。
交换机通过分配cell资源和packet资源(统称为缓冲资源)来控制各端口对数据缓冲区的使用:
· cell资源是指缓存报文时使用的设备存储芯片容量。端口上分配到的cell资源表示该端口最多可以在缓冲区中占用的缓存空间。
· packet资源是一种逻辑上的计数资源,它表示设备发送的数据包个数。设备每发送一个数据包,无论该数据包的长度是多少,均占用1个packet资源。端口上分配到的packet资源表示该端口最多可以在缓冲区中缓存的报文个数。
两种资源相互独立,但又共同作用,当端口需要缓存报文时,既使用相当于报文长度的cell资源,同时也使用相当于报文数量的packet资源,如果其中一种资源耗尽,则端口将不能再缓存报文,未进入缓冲区的报文将被丢弃。在完成报文发送后,端口将所使用的资源释放,等待下次缓存报文时再次使用。
为了灵活应对网络中可能出现的突发流量,本系列交换机的cell和packet资源采用固定区域和共享区域的划分方式,资源耗尽的端口可以临时使用共享区域的资源来完成报文发送。用户可以手工设置cell资源和packet资源中共享区域所占的比例,其余部分将自动成为固定区域。
cell资源和packet资源均采用本节中介绍的划分方式,但二者可以具有不同的划分比例。
在本系列交换机上,缓冲资源的划分方式如图12-1所示:
如图12-1所示,固定区域的划分可以通过两个方向来进行:
· 基于端口划分:如图中纵向线条的划分示意,交换机自动将固定区域平均分配给每个端口,即每个端口有独享的端口资源。
· 基于队列划分:如图中横向线条的划分示意,表示每个队列所能使用当前端口独享资源的比例(以下称为队列的最小保证资源比),这个比例在所有端口上都保持一致。
如果端口在短时间内需要发送超长的报文或者是数量较多的报文,将会使端口独享的cell资源或packet资源消耗殆尽。
cell资源和packet资源的共享区域可以为端口上的突发流量提供应急的缓存能力,共享区域为所有端口的所有队列共用,即:当某个端口(或某个队列)有突发流量产生时,可以临时占用共享区域的资源,在完成突发流量的发送后,再释放其所占用的共享区域资源,供其它端口(或队列)使用。
当端口上的某个队列出现拥塞时(无可用的独享cell资源或packet资源),可以配置该队列在一定的比例之内动态使用cell或packet资源的共享区域,该比例称为队列的最大共享资源占用比。例如,配置队列0在无可用的独享cell资源时,最多可以占用cell资源的共享区域中6%的资源。
当端口上所有队列都出现拥塞时,端口独享的cell或packet资源已全部耗尽,此时可以配置该端口在一定比例内动态使用cell或packet资源的共享区域,该比例称为端口的最大共享资源占用比。例如,配置端口1最多可以占用packet资源的共享区域中30%的资源。
端口的最大共享资源占用比相当于对此端口下所有队列占用共享资源之和的限制,即每个队列可以有单独的最大共享资源占用比,但同一时刻8个队列占用共享资源的比例之和不能超过端口的最大共享资源占用比。
用户可以使用以下两种方式配置本系列交换机的数据缓冲区:
· 由交换机自动配置(Burst功能)
· 由用户手工配置
以上两种数据缓冲区的配置方式不能同时使用,如果已经使用某一种方式进行了配置,则必须先取消该方式的配置之后,才能使用另外一种方式进行配置。
配置了Burst功能后,交换机将自动分配cell资源和packet资源的共享区域比例、队列的最小保证资源比、队列和端口的最大共享资源占用比。
在下列情况下,Burst功能可以提供更好的报文缓存功能和流量转发性能:
· 广播或者组播报文流量密集,瞬间突发大流量的网络环境中;
· 报文从高速链路进入交换机,由低速链路转发出去;或者报文从相同速率的多个端口同时进入交换机,由一个相同速率的端口转发出去。
表12-1 通过Burst功能配置端口缓冲区
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
使能Burst功能 |
burst-mode enable |
必选 缺省情况下,Burst功能处于关闭状态 |
数据缓冲区的配置比较复杂,而且对设备的转发功能有重要的影响,建议用户不要轻易修改数据缓冲区的参数。在需要较大的缓存空间时,建议使用Burst功能来自动分配缓冲区。
表12-2 手工配置数据缓冲区配置任务简介
配置任务 |
说明 |
详细配置 |
配置缓冲资源中共享区域的比例 |
请根据需要进行相应的配置 |
|
配置队列的最小保证资源比 |
||
配置队列的最大共享资源占用比 |
||
配置端口的最大共享资源占用比 |
||
应用数据缓冲区配置 |
必选 |
表12-3 配置缓冲资源中共享区域的比例
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置cell资源中共享区域所占比例 |
buffer egress [ slot slot-number ] cell total-shared ratio ratio |
至少配置其中一项 缺省情况下,cell资源中共享区域所占比例为64%,packet资源中共享区域所占比例为70% |
配置packet资源中共享区域所占比例 |
buffer egress [ slot slot-number ] packet total-shared ratio ratio |
表12-4 配置队列的最小保证资源比
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置队列在cell缓冲区中的最小保证资源比 |
buffer egress [ slot slot-number ] cell queue queue-id guaranteed ratio ratio |
至少配置其中一项 缺省情况下,每个队列在cell资源和packet资源的最小保证资源比均为13% |
配置队列在packet缓冲区中的最小保证资源比 |
buffer egress [ slot slot-number ] packet queue queue-id guaranteed ratio ratio |
l 由于端口的独享资源是由8个队列共同使用,因此当用户修改了某个队列的最小保证资源比之后,其它队列的最小保证资源比将随之自动变化,自动变化的原则为:除用户手工配置的最小保证资源比之外,剩余比例将平均分配给未进行手工配置的队列。例如,如果配置一个队列的最小保证资源比为30%,则剩余7个队列的最小保证资源比将自动变化为10%。
l 在配置队列的最小保证资源比时,需要注意通过手工配置的各个队列资源占用比例之和不能超过100%。
l 队列的最小保证资源比对全局生效,即配置后每个端口上的该队列均能以相同的比例占用当前端口的独享资源。
表12-5 配置队列的最大共享资源占用比
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置队列在cell资源中的最大共享资源占用比 |
buffer egress [ slot slot-number ] cell queue queue-id shared ratio ratio |
至少配置其中一项 缺省情况下,队列在cell资源和packet资源中的最大共享资源占用比均为33% |
配置队列在packet资源中的最大共享资源占用比 |
buffer egress [ slot slot-number ] packet queue queue-id shared ratio ratio |
队列的最大共享资源占用比对全局生效,即配置后每个端口上的该队列均能以相同的最大共享资源占用比来动态使用共享区域的资源。
表12-6 配置端口的最大共享资源占用比
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置端口在cell资源中的最大共享资源占用比 |
buffer egress [ slot slot-number ] cell shared ratio ratio |
至少配置其中一项 缺省情况下,每个端口在cell资源和packet资源中的最大共享资源占用比均为50% |
配置端口在packet资源中的最大共享资源占用比 |
buffer egress [ slot slot-number ] packet shared ratio ratio |
端口的最大共享资源占用比对所有端口生效,即配置后每个端口均能够以相同的最大共享资源占用比来动态使用共享区域资源。
用户在完成对数据缓冲区的手工配置后,必须使用下面的步骤将所作的修改进行应用,之前的配置才能生效。
表12-7 应用数据缓冲区的配置
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
应用数据缓冲区的配置 |
buffer apply |
必选 |
dscp-dscp映射表的缺省映射关系为:映射输出值等于输入值。
表13-1 dot1p-lp、dot1p-dp缺省映射关系
映射输入索引 |
dot1p-lp映射 |
dot1p-dp映射 |
802.1p优先级(dot1p) |
本地优先级(lp) |
丢弃优先级(dp) |
0 |
2 |
0 |
1 |
0 |
0 |
2 |
1 |
0 |
3 |
3 |
0 |
4 |
4 |
0 |
5 |
5 |
0 |
6 |
6 |
0 |
7 |
7 |
0 |
表13-2 dscp-dp、dscp-dot1p缺省映射关系
映射输入索引 |
dscp-dp映射 |
dscp-dot1p映射 |
dscp |
丢弃优先级(dp) |
802.1p优先级(dot1p) |
0~7 |
0 |
0 |
8~15 |
0 |
1 |
16~23 |
0 |
2 |
24~31 |
0 |
3 |
32~39 |
0 |
4 |
40~47 |
0 |
5 |
48~55 |
0 |
6 |
56~63 |
0 |
7 |
图13-1 ToS和DS域
如图13-1所示,IPv4报文头的ToS字段有8个bit,其中前3个bit表示的就是IP优先级,取值范围为0~7;IPv6报文头的Traffic Classes字段有8个bit,其中前3个bit表示的就是IP优先级,取值范围为0~7。RFC 2474中,重新定义了IPv4报文头部的ToS域和IPv6报文头部的Traffic Classes域,称之为DS(Differentiated Services,差分服务)域,其中DSCP优先级用该域的前6位(0~5位)表示,取值范围为0~63,后2位(6、7位)是保留位。
表13-3 IP优先级说明
IP优先级(十进制) |
IP优先级(二进制) |
关键字 |
0 |
000 |
routine |
1 |
001 |
priority |
2 |
010 |
immediate |
3 |
011 |
flash |
4 |
100 |
flash-override |
5 |
101 |
critical |
6 |
110 |
internet |
7 |
111 |
network |
表13-4 DSCP优先级说明
DSCP优先级(十进制) |
DSCP优先级(二进制) |
关键字 |
46 |
101110 |
ef |
10 |
001010 |
af11 |
12 |
001100 |
af12 |
14 |
001110 |
af13 |
18 |
010010 |
af21 |
20 |
010100 |
af22 |
22 |
010110 |
af23 |
26 |
011010 |
af31 |
28 |
011100 |
af32 |
30 |
011110 |
af33 |
34 |
100010 |
af41 |
36 |
100100 |
af42 |
38 |
100110 |
af43 |
8 |
001000 |
cs1 |
16 |
010000 |
cs2 |
24 |
011000 |
cs3 |
32 |
100000 |
cs4 |
40 |
101000 |
cs5 |
48 |
110000 |
cs6 |
56 |
111000 |
cs7 |
0 |
000000 |
be(default) |
802.1p优先级位于二层报文头部,适用于不需要分析三层报头,而需要在二层环境下保证QoS的场合。
图13-2 带有802.1Q标签头的以太网帧
如图13-2所示,4个字节的802.1Q标签头包含了2个字节的TPID(Tag Protocol Identifier,标签协议标识,取值为0x8100)和2个字节的TCI(Tag Control Information,标签控制信息),图13-3显示了802.1Q标签头的详细内容,Priority字段就是802.1p优先级。之所以称此优先级为802.1p优先级,是因为有关这些优先级的应用是在802.1p规范中被详细定义。
图13-3 802.1Q标签头
表13-5 802.1p优先级说明
802.1p优先级(十进制) |
802.1p优先级(二进制) |
关键字 |
0 |
000 |
best-effort |
1 |
001 |
background |
2 |
010 |
spare |
3 |
011 |
excellent-effort |
4 |
100 |
controlled-load |
5 |
101 |
video |
6 |
110 |
voice |
7 |
111 |
network-management |
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!