23-隧道配置
本章节下载: 23-隧道配置 (317.89 KB)
本章仅介绍隧道接口的配置,有关隧道模式的介绍请参见后续章节。
隧道技术是一种封装技术,即一种网络协议将其他网络协议的数据报文封装在自己的报文中,然后在网络中传输。封装后的数据报文在网络中传输的路径,称为隧道。隧道是一条虚拟的点对点连接,隧道的两端需要对数据报文进行封装及解封装。隧道技术就是指包括数据封装、传输和解封装在内的全过程。
目前支持的隧道技术包括:
· GRE(Generic Routing Encapsulation,通用路由封装)隧道,GRE的相关介绍和配置请参见“网络互通配置指导”中的“GRE”。
· IPv6 over IPv4隧道。
同一台设备上,多个Tunnel接口不要同时配置完全相同的目的端地址和源端地址。
隧道两端的设备上,需要创建虚拟的三层接口,即Tunnel接口,以便隧道两端的设备利用Tunnel接口发送报文、识别并处理来自隧道的报文。
Tunnel接口配置任务如下:
(1) 创建Tunnel接口
(2) (可选)配置封装后隧道报文的属性
(3) (可选)恢复当前Tunnel接口的缺省配置
(1) 进入系统视图。
system-view
(2) 创建Tunnel接口,指定隧道模式,并进入Tunnel接口视图。
interface tunnel number mode { gre [ ipv6 ] | ipv6-ipv4 [ isatap ] }
在隧道的两端应配置相同的隧道模式,否则可能造成报文传输失败。
(3) 设置隧道的源端地址或源接口。
source { ipv4-address | ipv6-address | interface-type interface-number }
缺省情况下,未设置隧道的源端地址和源接口。
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。
(4) 设置隧道的目的端地址。
destination { ipv4-address | ipv6-address }
缺省情况下,未设置隧道的目的端地址。
隧道的目的端地址是对端接收报文的接口的地址,该地址将作为封装后隧道报文的目的地址。
(5) (可选)配置接口描述信息。
description text
缺省情况下,接口描述信息为“该接口的接口名 Interface”。
(6) (可选)配置Tunnel接口的MTU值。
mtu size
缺省情况下,隧道接口的状态始终为Down时,隧道的MTU值为64000;隧道接口的状态当前为Up时,隧道的MTU值为根据隧道目的地址查找路由而得到的出接口的MTU值减隧道封装报文头长度。
(7) (可选)配置Tunnel接口的期望带宽。
bandwidth bandwidth-value
缺省情况下,接口的期望带宽=接口的最大速率÷1000(kbps)。
期望带宽供业务模块使用,不会对接口实际带宽造成影响。
(8) (可选)开启Tunnel接口。
undo shutdown
缺省情况下,Tunnel接口不处于Administratively DOWN状态。
当要求同一个Tunnel接口的流量必须在同一个slot上进行处理时,可以在Tunnel接口下配置处理接口流量的slot。
为提高当前接口处理流量的可靠性,可以通过service命令和service standby命令为接口分别指定一个主用slot和一个备用slot进行流量处理。
接口上同时配置了主用slot和备用slot时,流量处理的机制如下:
· 当主用slot不可用时,流量由备用slot处理。之后,即使主用slot恢复可用,流量也继续由备用slot处理;仅当备用slot不可用时,流量才切换到主用slot。
· 当主用slot和备用slot均不可用时,流量由接收报文的slot处理;之后,主用slot和备用slot谁先恢复可用,流量就由谁处理。
如果接口上未配置主用slot和备用slot,则业务处理在接收报文的slot上进行。
为避免不必要的流量切换,建议配置主用slot后,再配置备用slot。如果先配置备用slot,则流量由备用slot处理;在配置主用slot后,流量将会从备用slot切换到主用slot。
(1) 进入系统视图。
system-view
(2) 进入Tunnel接口视图。
interface tunnel number
(3) 配置处理接口流量的主用slot。
service slot slot-number
(4) 配置处理接口流量的备用slot。
service standby slot slot-number
(1) 进入系统视图。
system-view
(2) 进入Tunnel接口视图。
interface tunnel number
(3) 设置封装后隧道报文的ToS。
tunnel tos { copy-inner-tos | tos-value }
缺省情况下,封装后隧道报文的ToS值与封装前原始报文的ToS值相同。
(4) 设置封装后隧道报文的TTL值。
tunnel ttl ttl-value
缺省情况下,封装后隧道报文的TTL值为255。
接口下的某些配置恢复到缺省情况后,会对设备上当前运行的业务产生影响。建议您在执行本配置前,完全了解其对网络产生的影响。
您可以在执行default命令后通过display this命令确认执行效果。对于未能成功恢复缺省的配置,建议您查阅相关功能的命令手册,手工执行恢复该配置缺省情况的命令。如果操作仍然不能成功,您可以通过设备的提示信息定位原因。
(1) 进入系统视图。
system-view
(2) 进入Tunnel接口视图。
interface tunnel number
(3) 恢复当前接口的缺省配置。
default
在任意视图下执行display命令可以显示隧道配置后的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除Tunnel接口的统计信息。
表1-1 隧道显示和维护
操作 |
命令 |
显示Tunnel接口的相关信息 |
display interface [ tunnel [ number ] ] [ brief [ description | down ] ] |
显示Tunnel接口的IPv6相关信息(本命令的详细介绍,请参见“网络互通命令参考”中的“IPv6基础”) |
display ipv6 interface [ tunnel [ number ] ] [ brief ] |
清除Tunnel接口的统计信息 |
reset counters interface [ tunnel [ number ] ] |
清除Tunnel接口的IPv6统计信息(本命令的详细介绍,请参见“网络互通命令参考”中的“IPv6基础”) |
reset ipv6 statistics [ slot slot-number ] |
在Tunnel接口上配置了相关的参数后(例如隧道的源端地址、目的端地址和隧道模式),Tunnel接口仍未处于up状态。
Tunnel接口未处于up状态的原因可能是隧道起点的物理接口没有处于up状态,或隧道的目的端地址不可达。
使用display interface和display ipv6 interface命令查看隧道起点的物理接口状态为up还是down。如果物理接口状态是down的,请检查网络连接。
使用display ipv6 routing-table和display ip routing-table命令查看是否目的端地址通过路由可达。如果路由表中没有保证隧道通讯的路由表项,请配置相关路由。
如图2-1所示,IPv6 over IPv4隧道是在IPv6数据报文前封装上IPv4的报文头,通过隧道使IPv6报文穿越IPv4网络,实现隔离的IPv6网络互通。IPv6 over IPv4隧道两端的设备必须支持IPv4/IPv6双协议栈,即同时支持IPv4协议和IPv6协议。
图2-1 IPv6 over IPv4隧道原理图
IPv6 over IPv4隧道对报文的处理过程如下:
(1) IPv6网络中的主机发送IPv6报文,该报文到达隧道的源端设备Device A。
(2) Device A根据路由表判定该报文要通过隧道进行转发后,在IPv6报文前封装上IPv4的报文头,通过隧道的实际物理接口将报文转发出去。IPv4报文头中的源IP地址为隧道的源端地址,目的IP地址为隧道的目的端地址。
(3) 封装报文通过隧道到达隧道目的端设备(或称隧道终点)Device B,Device B判断该封装报文的目的地是本设备后,将对报文进行解封装。
(4) Device B根据解封装后的IPv6报文的目的地址处理该IPv6报文。如果目的地就是本设备,则将IPv6报文转给上层协议处理;否则,查找路由表转发该IPv6报文。
根据隧道终点的IPv4地址的获取方式不同,隧道分为“配置隧道”和“自动隧道”。
· 如果IPv6 over IPv4隧道终点的IPv4地址不能从IPv6报文的目的地址中自动获取,需要进行手工配置,这样的隧道称为“配置隧道”。
· 如果IPv6报文的目的地址中嵌入了IPv4地址,则可以从IPv6报文的目的地址中自动获取隧道终点的IPv4地址,这样的隧道称为“自动隧道”。
根据对IPv6报文的封装方式的不同,IPv6 over IPv4隧道分为以下几种模式。
IPv6 over IPv4手动隧道是点到点之间的链路。建立手动隧道需要在隧道两端手工指定隧道的源端和目的端地址。
手动隧道可以建立在连接IPv4网络和IPv6网络的两个边缘路由器之间,实现隔离的IPv6网络跨越IPv4网络通信;也可以建立在边缘路由器和IPv4/IPv6双栈主机之间,实现隔离的IPv6网络跨越IPv4网络与双栈主机通信。
ISATAP隧道是点到多点的自动隧道技术,为IPv6主机通过IPv4网络接入IPv6网络提供了一个较好的解决方案。
使用ISATAP隧道时,IPv6报文的目的地址要采用特殊的ISATAP地址。ISATAP地址格式为:Prefix:0:5EFE:abcd:efgh/64。其中,64位的Prefix为任何合法的IPv6单播地址前缀;abcd:efgh为用16进制表示的32位IPv4地址(如1.1.1.1可以表示为0101:0101),该IPv4地址不要求全球唯一。通过ISATAP地址中嵌入的IPv4地址可以自动确定隧道的终点,使隧道的建立非常方便。
ISATAP隧道主要用于跨越IPv4网络在IPv6主机与边缘路由器之间、两个边缘路由器之间建立连接。
图2-2 ISATAP隧道原理图
IPv6 over IPv4隧道配置任务如下:
(1) 配置IPv6 over IPv4隧道
请选择以下一项任务进行配置:
· 在本端设备上为隧道指定的目的端地址,应该与在对端设备上为隧道指定的源端地址相同;在本端设备上为隧道指定的源端地址,应该与在对端设备上为隧道指定的目的端地址相同。
· 在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址和目的端地址。
· 如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。用户可以配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址。用户也可以配置动态路由,在Tunnel接口使能动态路由协议。在隧道的两端都要进行此项配置,配置的详细情况请参见“网络互通配置指导”中的“IPv6静态路由”或其他路由协议配置。
(1) 进入系统视图。
system-view
(2) 进入模式为IPv6 over IPv4手动隧道的Tunnel接口视图。
interface tunnel number [ mode ipv6-ipv4 ]
(3) 设置Tunnel接口的IPv6地址。
详细配置方法,请参见“网络互通配置指导”中的“IPv6基础”。
(4) 设置隧道的源端地址或源接口。
source { ipv4-address | interface-type interface-number }
缺省情况下,未设置隧道的源端地址和源接口。
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。
(5) 设置隧道的目的端地址。
destination ipv4-address
缺省情况下,未设置隧道的目的端地址。
隧道的目的端地址是对端接收报文的接口的地址,该地址将作为封装后隧道报文的目的地址。
(6) (可选)设置封装后隧道报文的DF(Don’t Fragment,不分片)标志。
tunnel dfbit enable
缺省情况下,未设置隧道报文的不分片标志,即转发隧道报文时允许分片。
如图2-3所示,两个IPv6网络分别通过Device A和Device B与IPv4网络连接,要求在Device A和Device B之间建立IPv6 over IPv4隧道,使两个IPv6网络可以互通。由于隧道终点的IPv4地址不能从IPv6报文的目的地址中自动获取,因此,需要配置IPv6 over IPv4手动隧道。
图2-3 IPv6 over IPv4手动隧道组网图
在开始下面的配置之前,请确保Device A和Device B之间IPv4报文路由可达。
(1) 配置Device A
# 配置接口GigabitEthernet1/1/2的地址。
<DeviceA> system-view
[DeviceA] interface gigabitethernet 1/1/2
[DeviceA-GigabitEthernet1/1/2] ip address 192.168.100.1 255.255.255.0
[DeviceA-GigabitEthernet1/1/2] quit
# 配置接口GigabitEthernet1/1/1的IPv6地址。
[DeviceA] interface gigabitethernet 1/1/1
[DeviceA-GigabitEthernet1/1/1] ipv6 address 3002::1 64
[DeviceA-GigabitEthernet1/1/1] quit
# 创建模式为IPv6 over IPv4手动隧道的接口Tunnel0。
[DeviceA] interface tunnel 0 mode ipv6-ipv4
# 配置Tunnel0接口的IPv6地址。
[DeviceA-Tunnel0] ipv6 address 3001::1/64
# 配置Tunnel0接口的源接口为GigabitEthernet1/1/2。
[DeviceA-Tunnel0] source gigabitethernet 1/1/2
# 配置Tunnel0接口的目的端地址(Device B的GigabitEthernet1/1/2的IP地址)。
[DeviceA-Tunnel0] destination 192.168.50.1
[DeviceA-Tunnel0] quit
# 配置从Device A经过Tunnel0接口到IPv6 network 2的静态路由。
[DeviceA] ipv6 route-static 3003:: 64 tunnel 0
(2) 配置Device B
# 配置接口GigabitEthernet1/1/2的地址。
<DeviceB> system-view
[DeviceB] interface gigabitethernet 1/1/2
[DeviceB-GigabitEthernet1/1/2] ip address 192.168.50.1 255.255.255.0
[DeviceB-GigabitEthernet1/1/2] quit
# 配置接口GigabitEthernet1/1/1的IPv6地址。
[DeviceB] interface gigabitethernet 1/1/1
[DeviceB-GigabitEthernet1/1/1] ipv6 address 3003::1 64
[DeviceB-GigabitEthernet1/1/1] quit
# 创建模式为IPv6 over IPv4手动隧道的接口Tunnel0。
[DeviceB] interface tunnel 0 mode ipv6-ipv4
# 配置Tunnel0接口的IPv6地址。
[DeviceB-Tunnel0] ipv6 address 3001::2/64
# 配置Tunnel0接口的源接口为GigabitEthernet1/1/2。
[DeviceB-Tunnel0] source gigabitethernet 1/1/2
# 配置Tunnel0接口的目的端地址(Device A的GigabitEthernet1/1/2的IP地址)。
[DeviceB-Tunnel0] destination 192.168.100.1
[DeviceB-Tunnel0] quit
# 配置从Device B经过Tunnel0接口到IPv6 network 1的静态路由。
[DeviceB] ipv6 route-static 3002:: 64 tunnel 0
# 完成上述配置后,在Device A和Device B上分别执行display ipv6 interface命令,可以看出Tunnel0接口处于up状态。(具体显示信息略)
# 从Device A和Device B上可以Ping通对端的GigabitEthernet1/1/1接口的IPv6地址。下面仅以Device A为例。
[DeviceA] ping ipv6 3003::1
Ping6(56 data bytes) 3001::1 --> 3003::1, press CTRL_C to break
56 bytes from 3003::1, icmp_seq=0 hlim=64 time=45.000 ms
56 bytes from 3003::1, icmp_seq=1 hlim=64 time=10.000 ms
56 bytes from 3003::1, icmp_seq=2 hlim=64 time=4.000 ms
56 bytes from 3003::1, icmp_seq=3 hlim=64 time=10.000 ms
56 bytes from 3003::1, icmp_seq=4 hlim=64 time=11.000 ms
--- Ping6 statistics for 3003::1 ---
5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss
round-trip min/avg/max/std-dev = 4.000/16.000/45.000/14.711 ms
· ISATAP隧道不需要配置隧道的目的端地址,因为隧道的目的端地址可以通过ISATAP地址中嵌入的IPv4地址自动获得。
· 对于自动隧道,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址。
· 如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。对于自动隧道,用户只能配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址,不支持动态路由。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“网络互通配置指导”中的“IPv6静态路由”。
(1) 进入系统视图。
system-view
(2) 进入模式为ISATAP隧道的Tunnel接口视图。
interface tunnel number [ mode ipv6-ipv4 isatap ]
(3) 设置Tunnel接口的IPv6地址。
详细配置方法,请参见“网络互通配置指导”中的“IPv6基础”。
(4) 设置隧道的源端地址或源接口。
source { ipv4-address | interface-type interface-number }
缺省情况下,未设置隧道的源端地址和源接口。
如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。
(5) (可选)设置封装后隧道报文的DF(Don’t Fragment,不分片)标志。
tunnel dfbit enable
缺省情况下,未设置隧道报文的不分片标志,即转发隧道报文时允许分片。
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!