05-组播路由与转发配置
本章节下载: 05-组播路由与转发配置 (432.16 KB)
组播路由与转发中有以下三种表:
· 每个组播路由协议都有一个协议自身的路由表,如PIM路由表。
· 各组播路由协议的组播路由信息经过综合形成一个总的组播路由表,该表由一系列(S,G)表项组成,即一系列由组播源S向组播组G发送组播数据的组播路由信息。组播路由表中包含了由一或多种组播路由协议生成的组播路由。
· 组播转发表直接用于控制组播数据包的转发,它与组播路由表保持一致,组播路由表中最优的组播路由会直接下发到组播转发表中。
组播路由协议在创建和维护组播路由表项时,运用了RPF(Reverse Path Forwarding,逆向路径转发)检查机制,以确保组播数据能够沿正确的路径传输,同时还能避免由于各种原因而造成的环路。
执行RPF检查的过程如下:
(1) 首先,以“报文源”的IP地址为目的地址,分别从单播路由表、MBGP路由表和组播静态路由表中各选出一条最优路由。
根据组播报文传输的具体情况不同,“报文源”所代表的具体含义也不同:
· 如果当前报文沿从组播源到接收者或RP(Rendezvous Point,汇集点)的SPT(Shortest Path Tree,最短路径树)进行传输,则以组播源为“报文源”进行RPF检查。
· 如果当前报文沿从RP到接收者的RPT(Rendezvous Point Tree,共享树)进行传输,或者沿从组播源到RP的组播源侧RPT进行传输,则都以RP为“报文源”进行RPF检查。
· 如果当前报文为BSR(Bootstrap Router,自举路由器)报文,沿从BSR到各路由器的路径进行传输,则以BSR为“报文源”进行RPF检查。
有关SPT、RPT、组播源侧RPT、RP和BSR的详细介绍,请参见“IP组播配置指导”中的“PIM”。
(2) 然后,从这些最优路由中再选出一条作为RPF路由。选取规则如下:
· 如果配置了按照最长匹配选择路由,则:
¡ 选择掩码匹配最长的路由。
¡ 如果掩码相同,则选择路由优先级最高的路由。
¡ 如果路由优先级也相同,则按照组播静态路由、MBGP路由、单播路由的顺序进行选择。
· 如果没有配置按照最长匹配选择路由,则:
¡ 选择路由优先级最高的路由。
¡ 如果路由优先级相同,则按照组播静态路由、MBGP路由、单播路由的顺序进行选择。
RPF路由中包含有RPF接口和RPF邻居的信息:
· 如果RPF路由为单播路由或MBGP路由,则该路由表项的出接口就是RPF接口,下一跳就是RPF邻居。
· 如果RPF路由为组播静态路由,则该路由表项中会明确指定RPF接口和RPF邻居。
(3) 最后,判断报文实际到达的接口与RPF接口是否相同:
· 相同,RPF检查通过。
· 不同,RPF检查失败。
对每一个收到的组播数据报文都进行RPF检查会给路由器带来较大负担,而利用组播转发表可以解决这个问题。在建立组播路由和转发表时,会把组播数据报文(S,G)的RPF接口记录为(S,G)表项的入接口。当路由器收到组播数据报文(S,G)后,查找组播转发表:
(1) 如果组播转发表中不存在(S,G)表项,则对该报文执行RPF检查,将其RPF接口作为入接口,结合相关路由信息创建相应的表项,并下发到组播转发表中:
· 若该报文实际到达的接口正是其RPF接口,则RPF检查通过,向所有的出接口转发该报文;
· 若该报文实际到达的接口不是其RPF接口,则RPF检查失败,丢弃该报文。
(2) 如果组播转发表中已存在(S,G)表项,且该报文实际到达的接口与入接口相匹配,则向所有的出接口转发该报文。
(3) 如果组播转发表中已存在(S,G)表项,但该报文实际到达的接口与入接口不匹配,则对此报文执行RPF检查:
· 若其RPF接口与入接口一致,则说明(S,G)表项正确,丢弃这个来自错误路径的报文;
· 若其RPF接口与入接口不符,则说明(S,G)表项已过时,于是把入接口更新为RPF接口。如果该报文实际到达的接口正是其RPF接口,则向所有的出接口转发该报文,否则将其丢弃。
图1-1 RPF检查过程
如图1-1所示,假设网络中单播路由畅通,未配置MBGP,Device C上也未配置组播静态路由。组播报文(S,G)沿从组播源(Source)到接收者(Receiver)的SPT进行传输。假定Device C上的组播转发表中已存在(S,G)表项,其记录的入接口为GigabitEthernet1/0/2:
· 如果该组播报文从接口GigabitEthernet1/0/2到达Device C,与(S,G)表项的入接口相匹配,则向所有的出接口转发该报文。
· 如果该组播报文从接口GigabitEthernet1/0/1到达Device C,与(S,G)表项的入接口不匹配,则对其执行RPF检查:通过查找单播路由表发现到达Source的出接口(即RPF接口)是GigabitEthernet1/0/2,与(S,G)表项的入接口一致。这说明(S,G)表项是正确的,该报文来自错误的路径,RPF检查失败,于是丢弃该报文。
根据具体应用环境的不同,组播静态路由有以下两种主要用途:
通常,组播的网络拓扑结构与单播相同,组播数据的传输路径也与单播相同。可以通过配置组播静态路由以改变RPF路由,从而为组播数据创建一条与单播不同的传输路径。
图1-2 改变RPF路由示意图
如图1-2所示,当网络中没有配置组播静态路由时,Device C到组播源(Source)的RPF邻居为Device A,从Source发出的组播信息沿Device A—Device C的路径传输,与单播路径一致;当在Device C上配置了组播静态路由,指定从Device C到Source的RPF邻居为Device B之后,从Source发出的组播信息将改变传输路径,沿Device A—Device B—Device C的新路径传输。
当网络中的单播路由被阻断时,由于没有RPF路由而无法进行包括组播数据在内的数据转发。可以通过配置组播静态路由以生成RPF路由,从而创建组播路由表项以指导组播数据的转发。
图1-3 衔接RPF路由示意图
如图1-3所示,RIP域与OSPF域之间实行单播路由隔离。当网络中没有配置组播静态路由时,OSPF域内的接收者(Receiver)不能收到RIP域内的组播源(Source)所发出的组播信息;当在Device C和Device D上均配置了组播静态路由,分别指定从Device C到Source的RPF邻居为Device B、从Device D到Source的RPF邻居为Device C之后,Receiver便能收到Source发出的组播信息了。
组播静态路由仅在所配置的组播路由器上生效,不会以任何方式被广播或者引入给其它路由器。
网络中可能存在不支持组播协议的路由器,从组播源发出的组播数据沿组播路由器逐跳转发,当下一跳路由器不支持组播协议时,组播转发路径将被阻断。而通过在处于单播网段两端的组播路由器之间建立隧道,则可以实现跨单播网段的组播数据转发。
如图1-4所示,在组播路由器Device A和Device B之间建立隧道。Device A将组播数据封装在单播报文中,通过单播路由器转发至隧道另一端的Device B,再由Device B将单播报文头剥掉后继续进行组播传输。
若要将该隧道专用于组播数据传输,可以在隧道两端只配置组播静态路由而不配置单播静态路由,从而使单播数据报文无法利用此隧道进行传输。
设备不支持在LSU1TGS16SC0单板上配置GRE隧道实现组播转发功能。
Mtrace功能可以用来跟踪组播数据在组播网络中经过的路径。
· LHR(Last-Hop Router,最后一跳路由器):在指定组播网络中,如果某路由器有一个接口的IP地址与指定目的端IP地址在同一个网段内,且能够向该网段转发特定的组播流,则称该路由器为最后一跳路由器。
· FHR(First-Hop Router,第一跳路由器):与组播源直连的路由器。
· Client(客户端):触发组播路径跟踪的路由器。
(1) 客户端向指定目的端发送最大TTL的查询报文(Query Message)。
(2) 最后一跳路由器收到查询报文后,在该报文上添加本地转发信息,将其转换成请求报文(Request Message),并向上游邻居转发该请求报文。
(3) 路径中的每台路由器都在收到的请求报文后添加本地转发信息,并向上游邻居发送。
(4) 第一跳路由器在收到请求报文后,同样添加本地转发信息,然后将其报文类型改为回应报文(Reply Message),向客户端发送。
(5) 客户端收到回应报文后解析其中的转发信息并显示该信息。
如果客户端在规定的时间内没有收到回复,跟踪模式会自动切换成逐跳模式。即发送最大跳数为1的查询报文,并等待回复。如果在规定时间内收到回复,会继续发送最大跳数为2的查询报文。依此类推,发送跳数递增的查询报文,直到跟踪结束。如果路径中某设备未能在规定时间内回复,则不再继续发送跳数递增的查询报文。
表1-1 组播路由与转发配置任务简介
配置任务 |
说明 |
详细配置 |
|
使能IP组播路由 |
必选 |
||
配置组播路由与转发 |
配置组播静态路由 |
可选 |
|
配置按照最长匹配选择RPF路由 |
可选 |
||
配置对组播流量进行负载分担 |
可选 |
||
配置组播转发边界 |
可选 |
||
配置组播数据在Super VLAN内的各Sub VLAN之间互通 |
可选 |
||
配置组播路径跟踪功能 |
可选 |
当一个接口配置有从IP地址或借用了其它接口的IP地址时,组播数据并不能通过从IP地址或借来的IP地址进行路由和转发,而只能通过该接口的主IP地址进行路由与转发。有关主、从IP地址以及IP地址借用的详细介绍,请参见“三层技术-IP业务配置指导”中的“IP地址”。
在公网实例或VPN实例中配置各项三层组播功能之前,必须先在该实例中使能IP组播路由。
表1-2 使能IP组播路由
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
使能IP组播路由,并进入MRIB(Multicast Routing Information Base,组播路由信息库)视图 |
multicast routing [ vpn-instance vpn-instance-name ] |
缺省情况下,IP组播路由处于关闭状态 |
在配置组播路由与转发之前,需完成以下任务:
· 配置任一单播路由协议,实现域内网络层互通
· 配置PIM-DM或PIM-SM
通过配置组播静态路由,可以为来自特定组播源的组播报文指定RPF接口或RPF邻居。在删除已配置好的组播静态路由时,除了可以通过undo ip rpf-route-static命令删除指定的组播静态路由外,还可以通过delete ip rpf-route-static命令删除所有的组播静态路由。
表1-3 配置组播静态路由
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
配置组播静态路由 |
ip rpf-route-static [ vpn-instance vpn-instance-name ] source-address { mask-length | mask } { rpf-nbr-address | interface-type interface-number } [ preference preference ] |
缺省情况下,不存在任何组播静态路由 |
(可选)删除所有组播静态路由 |
delete ip rpf-route-static [ vpn-instance vpn-instance-name ] |
- |
用户可以配置组播路由器按照最长匹配原则来选择RPF路由,有关RPF路由选择的详细介绍,请参见“1.1.1 1. RPF检查过程”一节。
表1-4 配置按照最长匹配选择RPF路由
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入MRIB视图 |
multicast routing [ vpn-instance vpn-instance-name ] |
- |
配置按照最长匹配选择RPF路由 |
longest-match |
缺省情况下,选择路由优先级最高的路由作为RPF路由 |
用户通过配置根据组播源或组播源组进行组播流量的负载分担,可以优化存在多条组播数据流时的网络流量。
表1-5 配置对组播流量进行负载分担
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入MRIB视图 |
multicast routing [ vpn-instance vpn-instance-name ] |
- |
配置对组播流量进行负载分担 |
load-splitting { source | source-group | ucmp } |
缺省情况下,不对组播流量进行负载分担 本命令对双向PIM不生效 |
进行本配置不需要使能IP组播路由。
组播信息在网络中的转发并不是漫无边际的,每个组播组对应的组播信息都必须在确定的范围内传递。组播转发边界为指定范围的组播组划定了边界条件,如果组播报文的目的地址与边界条件匹配,就停止转发。当在一个接口上配置了组播转发边界后,将不能从该接口转发组播报文(包括本机发出的组播报文),也不能从该接口接收组播报文。
表1-6 配置组播转发边界
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置组播转发边界 |
multicast boundary group-address { mask-length | mask } |
缺省情况下,接口不是任何组播组的转发边界 |
一个Super VLAN内可以有多个Sub VLAN,不同Sub VLAN之间相互隔离。通过本配置可以使组播数据在同一Super VLAN内的各Sub VLAN之间互通。有关Super VLAN及其Sub VLAN的详细介绍,请参见“二层技术-以太网交换配置指导”中的“VLAN”。
完成本配置后必须使用reset multicast forwarding-table命令清除组播转发表中所有以该VLAN接口为入接口的转发项,否则本配置将不能生效。
表1-7 配置组播数据在Super VLAN内的各Sub VLAN之间互通
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入VLAN接口视图 |
interface vlan-interface interface-number |
- |
配置组播数据在Super VLAN内的各Sub VLAN之间互通 |
multicast forwarding supervlan community |
缺省情况下,组播数据在Super VLAN内的各Sub VLAN之间隔离 |
表1-8 利用版本1的Mtrace功能跟踪组播数据的传输路径
操作 |
命令 |
说明 |
利用版本1的Mtrace功能跟踪特定的组播数据在组播网络中所经过的路径 |
mtrace [ v1 ] [ vpn-instance vpn-instance-name ] { source-address | group-address } * [ destination address ] [ verbose ] |
可在任意视图下执行此命令 |
表1-9 利用版本2的Mtrace功能跟踪组播数据的传输路径
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置Mtrace服务使用的UDP端口号 |
mtrace-service port number |
缺省情况下,Mtrace服务使用的UDP端口号为10240 跟踪路径上所有设备必须配置相同的UDP端口号,并保证UDP端口号没有被其他业务使用 |
利用版本2的Mtrace功能跟踪特定的组播数据在组播网络中所经过的路径信息 |
mtrace v2 [ vpn-instance vpn-instance-name ] { source-address | group-address } * [ destination address | port number | wait-time time | max-hop count ] * [ verbose ] |
可在任意视图下执行此命令 本命令指定的端口号与上一条命令配置的UDP端口号相同 |
执行reset命令清除组播路由表或组播转发表中的信息,可能导致组播信息无法正常传输。
在完成上述配置后,在任意视图下执行display命令可以显示配置后组播路由与转发的信息,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除组播路由与转发的统计信息。
表1-10 组播路由与转发显示和维护
操作 |
命令 |
显示MRIB维护的接口信息 |
display mrib [ vpn-instance vpn-instance-name ] interface [ interface-type interface-number ] |
显示组播边界的信息 |
display multicast [ vpn-instance vpn-instance-name ] boundary [ group-address [ mask-length | mask ] ] [ interface interface-type interface-number ] |
显示组播快速转发表信息(独立运行模式) |
display multicast [ vpn-instance vpn-instance-name ] fast-forwarding cache [ source-address | group-address ] * [ slot slot-number ] |
显示组播快速转发表信息(IRF模式) |
display multicast [ vpn-instance vpn-instance-name ] fast-forwarding cache [ source-address | group-address ] * [chassis chassis-number slot slot-number ] |
显示组播转发的DF信息(独立运行模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding df-info [ rp-address ] [ verbose ] [ slot slot-number ] |
显示组播转发的DF信息(IRF模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding df-info [ rp-address ] [ verbose ] [ chassis chassis-number slot slot-number ] |
显示组播转发的事件统计信息(独立运行模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding event [ slot slot-number ] |
显示组播转发的事件统计信息(IRF模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding event [ chassis chassis-number slot slot-number ] |
显示组播转发表的信息(独立运行模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding-table [ source-address [ mask { mask-length | mask } ] | group-address [ mask { mask-length | mask } ] | incoming-interface interface-type interface-number | outgoing-interface { exclude | include | match } interface-type interface-number | slot slot-number | statistics ] * |
显示组播转发表的信息(IRF模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding-table [ source-address [ mask { mask-length | mask } ] | group-address [ mask { mask-length | mask } ] | chassis chassis-number slot slot-number | incoming-interface interface-type interface-number | outgoing-interface { exclude | include | match } interface-type interface-number | statistics ] * |
显示组播转发表的DF列表信息(独立运行模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding-table df-list [ group-address ] [ verbose ] [ slot slot-number ] |
显示组播转发表的DF列表信息(IRF模式) |
display multicast [ vpn-instance vpn-instance-name ] forwarding-table df-list [ group-address ] [ verbose ] [ chassis chassis-number slot slot-number ] |
显示组播路由表的信息 |
display multicast [ vpn-instance vpn-instance-name ] routing-table [ source-address [ mask { mask-length | mask } ] | group-address [ mask { mask-length | mask } ] | incoming-interface interface-type interface-number | outgoing-interface { exclude | include | match } interface-type interface-number ] * |
显示组播静态路由表的信息 |
display multicast [ vpn-instance vpn-instance-name ] routing-table static [ source-address { mask-length | mask } ] |
显示组播源的RPF信息 |
display multicast [ vpn-instance vpn-instance-name ] rpf-info source-address [ group-address ] |
清除组播快速转发表中的转发项(独立运行模式) |
reset multicast [ vpn-instance vpn-instance-name ] fast-forwarding cache { { source-address | group-address } * | all } [ slot slot-number ] |
清除组播快速转发表中的转发项(IRF模式) |
reset multicast [ vpn-instance vpn-instance-name ] fast-forwarding cache { { source-address | group-address } * | all } [ chassis chassis-number slot slot-number ] |
清除组播转发的事件统计信息 |
reset multicast [ vpn-instance vpn-instance-name ] forwarding event |
清除组播转发表中的转发项 |
reset multicast [ vpn-instance vpn-instance-name ] forwarding-table { { source-address [ mask { mask-length | mask } ] | group-address [ mask { mask-length | mask } ] | incoming-interface { interface-type interface-number } } * | all } |
清除组播路由表中的路由项 |
reset multicast [ vpn-instance vpn-instance-name ] routing-table { { source-address [ mask { mask-length | mask } ] | group-address [ mask { mask-length | mask } ] | incoming-interface interface-type interface-number } * | all } |
· 清除组播路由表中的路由项后,组播转发表中的相应表项也将随之删除。
· 清除组播转发表中的转发项后,组播路由表中的相应表项也将随之删除。
· 网络中运行PIM-DM,所有交换机都支持组播功能;
· Switch A、Switch B和Switch C之间运行OSPF协议;
· 通常情况下,Receiver能通过Switch A—Switch B这条与单播路径相同的路径接收来自Source的组播信息;
· 要求通过配置,使Receiver能通过Switch A—Switch C—Switch B这条与单播路径不同的路径接收来自Source的组播信息。
图1-5 改变RPF路由配置举例
(1) 配置IP地址和单播路由协议
请按照图1-5配置各接口的IP地址和掩码,并在各交换机上配置OSPF协议,具体配置过程略。
(2) 使能IP组播路由,并使能PIM-DM和IGMP
# 在Switch B上使能IP组播路由,在主机侧接口Vlan-interface100上使能IGMP,并在其它接口上使能PIM-DM。
<SwitchB> system-view
[SwitchB] multicast routing
[SwitchB-mrib] quit
[SwitchB] interface vlan-interface 100
[SwitchB-Vlan-interface100] igmp enable
[SwitchB-Vlan-interface100] quit
[SwitchB] interface vlan-interface 101
[SwitchB-Vlan-interface101] pim dm
[SwitchB-Vlan-interface101] quit
[SwitchB] interface vlan-interface 102
[SwitchB-Vlan-interface102] pim dm
[SwitchB-Vlan-interface102] quit
# 在Switch A上使能IP组播路由,并在各接口上使能PIM-DM。
<SwitchA> system-view
[SwitchA] multicast routing
[SwitchA-mrib] quit
[SwitchA] interface vlan-interface 200
[SwitchA-Vlan-interface200] pim dm
[SwitchA-Vlan-interface200] quit
[SwitchA] interface vlan-interface 102
[SwitchA-Vlan-interface102] pim dm
[SwitchA-Vlan-interface102] quit
[SwitchA] interface vlan-interface 103
[SwitchA-Vlan-interface103] pim dm
[SwitchA-Vlan-interface103] quit
Switch C上的配置与Switch A相似,配置过程略。
# 在Switch B上显示到Source的RPF信息。
[SwitchB] display multicast rpf-info 50.1.1.100
RPF information about source 50.1.1.100:
RPF interface: Vlan-interface102, RPF neighbor: 30.1.1.2
Referenced route/mask: 50.1.1.0/24
Referenced route type: igp
Route selection rule: preference-preferred
Load splitting rule: disable
Switch B上当前的RPF路由来源于单播路由,RPF邻居是Switch A。
(3) 配置组播静态路由
# 在Switch B上配置组播静态路由,指定到Source的RPF邻居为Switch C。
[SwitchB] ip rpf-route-static 50.1.1.100 24 20.1.1.2
# 在Switch B上显示到Source的RPF信息。
[SwitchB] display multicast rpf-info 50.1.1.100
RPF information about source 50.1.1.100:
RPF interface: Vlan-interface101, RPF neighbor: 20.1.1.2
Referenced route/mask: 50.1.1.0/24
Referenced route type: multicast static
Route selection rule: preference-preferred
Load splitting rule: disable
与配置组播静态路由前相比,Switch B上的RPF路由已经产生了变化,其来源变为组播静态路由,RPF邻居变为Switch C。
· 网络中运行PIM-DM,所有交换机都支持组播功能;
· Switch B和Switch C之间运行OSPF协议,并与Switch A单播路由隔离;
· 通常情况下,Receiver能接收来自OSPF域内Source 1的组播信息;
· 要求通过配置,使Receiver也可以接收来自OSPF域外Source 2的组播信息。
图1-6 衔接RPF路由配置组网图
(1) 配置IP地址和单播路由协议
请按照图1-6配置各接口的IP地址和掩码,并在Switch B和Switch C上配置OSPF协议,具体配置过程略。
(2) 使能IP组播路由,并使能PIM-DM和IGMP
# 在Switch C上使能IP组播路由,在接口Vlan-interface101上使能PIM-DM,并在主机侧接口Vlan-interface100上使能IGMP。
<SwitchC> system-view
[SwitchC] multicast routing
[SwitchC-mrib] quit
[SwitchC] interface vlan-interface 100
[SwitchC-Vlan-interface100] igmp enable
[SwitchC-Vlan-interface100] quit
[SwitchC] interface vlan-interface 101
[SwitchC-Vlan-interface101] pim dm
[SwitchC-Vlan-interface101] quit
# 在Switch A上使能IP组播路由,并在各接口上使能PIM-DM。
<SwitchA> system-view
[SwitchA] multicast routing
[SwitchA-mrib] quit
[SwitchA] interface vlan-interface 300
[SwitchA-Vlan-interface300] pim dm
[SwitchA-Vlan-interface300] quit
[SwitchA] interface vlan-interface 102
[SwitchA-Vlan-interface102] pim dm
[SwitchA-Vlan-interface102] quit
Switch B上的配置与Switch A相似,配置过程略。
# 在Switch B和Switch C上分别显示到Source 2的RPF信息。
[SwitchB] display multicast rpf-info 50.1.1.100
[SwitchC] display multicast rpf-info 50.1.1.100
没有显示信息输出,说明在Switch B和Switch C上都没有到Source 2的RPF路由。
(3) 配置组播静态路由
# 在Switch B上配置组播静态路由,指定到Source 2的RPF邻居为Switch A。
[SwitchB] ip rpf-route-static 50.1.1.100 24 30.1.1.2
# 在Switch C上配置组播静态路由,指定到Source 2的RPF邻居为Switch B。
[SwitchC] ip rpf-route-static 50.1.1.100 24 20.1.1.2
# 在Switch B和Switch C上分别显示到Source 2的RPF信息。
[SwitchB] display multicast rpf-info 50.1.1.100
RPF information about source 50.1.1.100:
RPF interface: Vlan-interface102, RPF neighbor: 30.1.1.2
Referenced route/mask: 50.1.1.0/24
Referenced route type: multicast static
Route selection rule: preference-preferred
Load splitting rule: disable
[SwitchC] display multicast rpf-info 50.1.1.100
RPF information about source 50.1.1.100:
RPF interface: Vlan-interface101, RPF neighbor: 20.1.1.2
Referenced route/mask: 50.1.1.0/24
Referenced route type: multicast static
Route selection rule: preference-preferred
Load splitting rule: disable
与配置组播静态路由前相比,Switch B和Switch C上都有了到Source 2的RPF路由,且其均来源于组播静态路由。
· Switch A和Switch C支持组播功能并运行PIM-DM,但Switch B不支持组播功能;
· Switch A、Switch B和Switch C之间运行OSPF协议;
· 要求通过配置,使Receiver能够接收来自Source的组播信息。
图1-7 利用GRE隧道实现组播转发配置组网图
(1) 配置IP地址和单播路由协议
请按照图1-7配置各接口的IP地址和掩码,并在各交换机上配置OSPF协议,具体配置过程略。
(2) 配置GRE隧道
# 在Switch A上创建业务环回组1,并指定其业务类型为Tunnel类型。
<SwitchA> system-view
[SwitchA] service-loopback group 1 type tunnel
# 将Switch A的端口GigabitEthernet1/0/3(该端口不属于VLAN 100和101)加入业务环回组1。
[SwitchA] interface gigabitethernet 1/0/3
[SwitchA-GigabitEthernet1/0/3] port service-loopback group 1
[SwitchA-GigabitEthernet1/0/3] quit
# 在Switch A上创建接口Tunnel1,并指定其隧道模式为GRE over IPv4隧道。
[SwitchA] interface tunnel 1 mode gre
# 在Switch A上为Tunnel1接口配置IP地址,并指定隧道的源地址和目的地址。
[SwitchA-Tunnel1] ip address 50.1.1.1 24
[SwitchA-Tunnel1] source 20.1.1.1
[SwitchA-Tunnel1] destination 30.1.1.2
[SwitchA-Tunnel1] quit
# 在Switch C上创建业务环回组1,并指定其业务类型为Tunnel类型。
<SwitchC> system-view
[SwitchC] service-loopback group 1 type tunnel
# 将Switch C的端口GigabitEthernet1/0/3(该端口不属于VLAN 200和102)加入业务环回组1。
[SwitchC] interface gigabitethernet 1/0/3
[SwitchC-GigabitEthernet1/0/3] port service-loopback group 1
[SwitchC-GigabitEthernet1/0/3] quit
# 在Switch C上创建接口Tunnel1,并指定其隧道模式为GRE over IPv4隧道。
[SwitchC] interface tunnel 1 mode gre
# 在Switch C上为Tunnel1接口配置IP地址,并指定隧道的源地址和目的地址。
[SwitchC-Tunnel1] ip address 50.1.1.2 24
[SwitchC-Tunnel1] source 30.1.1.2
[SwitchC-Tunnel1] destination 20.1.1.1
[SwitchC-Tunnel1] quit
(3) 使能IP组播路由,并使能PIM-DM和IGMP
# 在Switch A上使能IP组播路由,并在各接口上使能PIM-DM。
[SwitchA] multicast routing
[SwitchA-mrib] quit
[SwitchA] interface vlan-interface 100
[SwitchA-Vlan-interface100] pim dm
[SwitchA-Vlan-interface100] quit
[SwitchA] interface vlan-interface 101
[SwitchA-Vlan-interface101] pim dm
[SwitchA-Vlan-interface101] quit
[SwitchA] interface tunnel 1
[SwitchA-Tunnel1] pim dm
[SwitchA-Tunnel1] quit
# 在Switch C上使能IP组播路由,在主机侧接口Vlan-interface200上使能IGMP,并在其它接口上使能PIM-DM。
[SwitchC] multicast routing
[SwitchC-mrib] quit
[SwitchC] interface vlan-interface 200
[SwitchC-Vlan-interface200] igmp enable
[SwitchC-Vlan-interface200] quit
[SwitchC] interface vlan-interface 102
[SwitchC-Vlan-interface102] pim dm
[SwitchC-Vlan-interface102] quit
[SwitchC] interface tunnel 1
[SwitchC-Tunnel1] pim dm
[SwitchC-Tunnel1] quit
(4) 配置组播静态路由
# 在Switch C上配置组播静态路由,指定到Source的RPF邻居为Switch A的Tunnel1接口。
[SwitchC] ip rpf-route-static 10.1.1.0 24 50.1.1.1
组播源向组播组225.1.1.1发送组播数据,接收者加入该组播组后能够收到组播源发来的组播数据。
# 显示Switch C上的PIM路由表信息。
[SwitchC] display pim routing-table
Total 1 (*, G) entry; 1 (S, G) entry
(*, 225.1.1.1)
Protocol: pim-dm, Flag: WC
UpTime: 00:04:25
Upstream interface: NULL
Upstream neighbor: NULL
RPF prime neighbor: NULL
Downstream interface(s) information:
Total number of downstreams: 1
1: Vlan-interface200
Protocol: igmp, UpTime: 00:04:25, Expires: -
(10.1.1.100, 225.1.1.1)
Protocol: pim-dm, Flag: ACT
UpTime: 00:06:14
Upstream interface: Tunnel1
Upstream neighbor: 50.1.1.1
RPF prime neighbor: 50.1.1.1
Downstream interface(s) information:
Total number of downstreams: 1
1: Vlan-interface200
Protocol: pim-dm, UpTime: 00:04:25, Expires: -
Switch C的RPF邻居为Switch A,组播数据通过GRE隧道直接由Switch A发往Switch C。
路由器没有配置动态路由协议,接口的物理状态与链路层协议状态都显示为up;但是组播静态路由失败。
· 如果没有正确配置或更新与当前网络情况相匹配的组播静态路由,则组播静态路由表中不存在此路由项;
· 如果查询到有比组播静态路由更优的路由,也可能导致组播静态路由失败。
(1) 使用display multicast routing-table static命令显示组播静态路由表的信息,以确定是否正确配置了对应的路由并存在于组播静态路由表中。
(2) 检查组播静态路由与RPF邻居相连接口的接口类型,如果不是点到点接口,则RPF邻居必须使用指定地址的形式配置。
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!