01-IRF配置
本章节下载 (595.25 KB)
IRF(Intelligent Resilient Framework,智能弹性架构)是H3C自主研发的软件虚拟化技术。它的核心思想是将多台设备连接在一起,进行必要的配置后,虚拟化成一台设备。使用这种虚拟化技术可以集合多台设备的硬件资源和软件处理能力,实现多台设备的协同工作、统一管理和不间断维护。
为了便于描述,这个“虚拟设备”也称为IRF。所以,本文中的IRF有两层意思,一个是指IRF技术,一个是指IRF设备。
IRF主要具有以下优点:
· 简化管理。IRF形成之后,用户通过任意成员设备的任意端口都可以登录IRF系统,对IRF内所有成员设备进行统一管理。
· 1:N备份。IRF由多台成员设备组成,其中,主设备负责IRF的运行、管理和维护,从设备在作为备份的同时也可以处理业务。一旦主设备故障,系统会迅速自动选举新的主设备,以保证业务不中断,从而实现了设备的1:N备份。
· 跨成员设备的链路聚合。IRF和上、下层设备之间的物理链路支持聚合功能,并且不同成员设备上的物理链路可以聚合成一个逻辑链路,多条物理链路之间可以互为备份也可以进行负载分担,当某个成员设备离开IRF,其它成员设备上的链路仍能收发报文,从而提高了聚合链路的可靠性。
· 强大的网络扩展能力。通过增加成员设备,可以轻松自如的扩展IRF的端口数、带宽。因为各成员设备都有CPU,能够独立处理协议报文、进行报文转发,所以IRF还能轻松自如的扩展处理能力。
如图1-1所示,主设备和从设备组成IRF,对上、下层设备来说,它们就是一台设备——IRF。
图1-1 IRF组网应用示意图
IRF虚拟化技术涉及如下基本概念:
IRF中每台设备都称为成员设备。成员设备按照功能不同,分为两种角色:
· 主用设备(简称为主设备):负责管理和控制整个IRF。
· 从属设备(简称为从设备):处理业务、转发报文的同时作为主设备的备份设备运行。当主设备故障时,系统会自动从从设备中选举一个新的主设备接替原主设备工作。
主设备和从设备均由角色选举产生。一个IRF中同时只能存在一台主设备,其它成员设备都是从设备。关于设备角色选举过程的详细介绍请参见“1.2.3 角色选举”。
一种专用于IRF成员设备之间进行连接的逻辑接口,每台成员设备上可以配置两个IRF端口,分别为IRF-Port1和IRF-Port2。它需要和物理端口绑定之后才能生效。
IRF端口采用二维编号,分为IRF-Portn/1和IRF-Portn/2,其中n为设备的成员编号。
为简洁起见,本文描述时统一使用IRF-Port1和IRF-Port2。
与IRF端口绑定,用于IRF成员设备之间进行连接的物理接口。
通常情况下,电口或者光口负责向网络中转发业务报文,将它们与IRF端口绑定后就作为IRF物理端口,可转发的报文包括IRF相关协商报文以及需要跨成员设备转发的业务报文。
由于IRF物理端口上不能开启STP或其它环路控制协议,IRF成员设备需要根据接收和发送报文的端口以及IRF的当前拓扑,来判断报文在发送后是否会产生环路。如果判断结果为会产生环路,设备将在位于环路路径上的发送端口处将报文丢弃。该方式会造成大量广播报文在IRF物理端口上被丢弃,此为正常现象。在使用SNMP工具监测设备端口的收发报文记录时,取消对IRF物理端口的监测,可以避免收到大量丢弃报文的告警信息。
域是一个逻辑概念,一个IRF对应一个IRF域。
为了适应各种组网应用,同一个网络里可以部署多个IRF,IRF之间使用域编号(DomainID)来以示区别。如图1-2所示,Device A和Device B组成IRF 1,Switch A和Switch B组成IRF 2。如果IRF 1和IRF 2之间有MAD检测链路,则两个IRF各自的成员设备间发送的MAD检测报文会被另外的IRF接收到,从而对两个IRF的MAD检测造成影响。这种情况下,需要给两个IRF配置不同的域编号,以保证两个IRF互不干扰。
图1-2 多IRF域示意图
如图1-3所示,两个(或多个)IRF各自已经稳定运行,通过物理连接和必要的配置,形成一个IRF,这个过程称为IRF合并。
图1-3 IRF合并示意图
如图1-4所示,一个IRF形成后,由于IRF链路故障,导致IRF中两相邻成员设备不连通,一个IRF变成两个IRF,这个过程称为IRF分裂。
图1-4 IRF分裂示意图
成员优先级是成员设备的一个属性,主要用于角色选举过程中确定成员设备的角色。优先级越高当选为主设备的可能性越大。
设备的缺省优先级均为1,如果想让某台设备当选为主设备,则在组建IRF前,可以通过命令行手工提高该设备的成员优先级。
IRF系统将经历物理连接、拓扑收集、角色选举、IRF的管理与维护四个阶段。成员设备之间需要先建立IRF物理连接,然后会自动进行拓扑收集和角色选举,完成IRF的建立,此后进入IRF管理和维护阶段。
要形成一个IRF,需要先连接成员设备的IRF物理端口。
本设备上与IRF-Port1口绑定的IRF物理端口只能和邻居成员设备IRF-Port2口上绑定的IRF物理端口相连,本设备上与IRF-Port2口绑定的IRF物理端口只能和邻居成员设备IRF-Port1口上绑定的IRF物理端口相连,如图1-5所示。否则,不能形成IRF。
图1-5 IRF物理连接示意图
· 设备出厂时没有将IRF端口与IRF物理端口绑定,需要用户通过命令行手工配置后才能用于IRF。
· 一个IRF端口可以与一个或多个IRF物理端口绑定,以提高IRF链路的带宽以及可靠性。可绑定的IRF物理端口的最大数目为2。
IRF的连接拓扑有两种:链形连接和环形连接,如图1-6所示。
· 链形连接对成员设备的物理位置要求比环形连接低,主要用于成员设备物理位置分散的组网。
· 环形连接比链形连接更可靠。因为当链形连接中出现链路故障时,会引起IRF分裂;而环形连接中某条链路故障时,会形成链形连接,IRF的业务不会受到影响。
图1-6 IRF连接拓扑示意图
目前,设备仅支持链形连接。
每个成员设备和邻居成员设备通过交互IRF Hello报文来收集整个IRF的拓扑。IRF Hello报文会携带拓扑信息,具体包括IRF端口连接关系、成员设备编号、成员设备优先级、成员设备的桥MAC等内容。
每个成员设备在本地记录自己已知的拓扑信息。设备刚启动时只记录了自身的拓扑信息。当IRF端口状态变为up后,设备会将已知的拓扑信息周期性的从up状态的IRF端口发送出去;邻居收到该信息后,会更新本地记录的拓扑信息;如此往复,经过一段时间的收集,所有成员设备都会收集到完整的拓扑信息。
此时会进入角色选举阶段。
确定成员设备角色为主设备或从设备的过程称为角色选举。角色选举会在以下情况下进行:IRF建立、主设备离开或者故障、两个IRF合并等。其中,IRF合并包括合并前独立运行的两个(或多个)IRF合并为一个IRF和IRF分裂后重新合并两种情况。
IRF建立、主设备离开或者故障、独立运行的两个(或多个)IRF合并为一个IRF时,角色选举规则如下:
(1) 当前主设备优先,IRF不会因为有新的成员设备加入而重新选举主设备。不过,当IRF形成时,因为没有主设备,所有加入的设备都认为自己是主设备,则继续下一条规则的比较。
(2) 成员优先级大的优先。如果优先级相同,则继续下一条规则的比较。
(3) 系统运行时间长的优先。在IRF中,成员设备启动时间间隔精度为10分钟,即10分钟之内启动的设备,则认为它们是同时启动的,则继续下一条规则的比较。
(4) CPU MAC小的优先。
通过以上规则选出的最优成员设备即为主设备,其它成员设备则均为从设备。
IRF分裂后重新合并时,原Recovery状态IRF中所有成员设备重启后以从设备身份加入原正常工作状态的IRF,原正常工作状态的IRF的主设备作为合并后IRF的主设备。
在角色选举完成后,IRF形成,进入IRF管理与维护阶段。
· IRF合并的情况下(分裂后重新合并的情况除外),每个IRF的主设备间会进行竞选,竞选仍然遵循角色选举的规则,竞选失败方的所有成员设备重启后均以从设备的角色加入获胜方,最终合并为一个IRF。合并过程中的重启需要用户手工完成。
· 不管设备与其它设备一起形成IRF,还是加入已有IRF,如果该设备被选为从设备,则该设备会使用主设备的配置重新启动,以保证和主设备上的配置一致,本设备上的配置文件还在,但不再生效。
角色选举完成之后,IRF形成,所有的成员设备组成一台虚拟设备存在于网络中,所有成员设备上的资源归该虚拟设备拥有并由主设备统一管理。
在运行过程中,IRF使用成员编号来标识成员设备,以便对其进行管理。例如,IRF中接口的编号会加入成员编号信息:当设备独立运行时,接口编号第一维参数的值通常为1,加入IRF后,接口编号第一维参数的值会变成成员编号的值。所以,在IRF中必须保证所有设备成员编号的唯一性。
如果建立IRF时存在编号相同的成员设备,则不能建立IRF;如果新设备加入IRF,但是该设备与已有成员设备的编号冲突,则该设备不能加入IRF。请在建立IRF前,请统一规划各成员设备的编号,并逐一进行手工配置,以保证各设备成员编号的唯一性。
如果某成员设备A故障或者IRF链路故障,其邻居设备会立即将“成员设备A离开”的信息广播通知给IRF中的其它设备。获取到离开消息的成员设备会根据本地维护的IRF拓扑信息表来判断离开的是主设备还是从设备,如果离开的是主设备,则触发新的角色选举,再更新本地的IRF拓扑;如果离开的是从设备,则直接更新本地的IRF拓扑,以保证IRF拓扑能迅速收敛。
IRF端口的状态由与它绑定的IRF物理端口的状态决定。与IRF端口绑定的所有IRF物理端口状态均为down时,IRF端口的状态才会变成down。
IRF链路故障会导致一个IRF变成多个新的IRF。这些IRF拥有相同的IP地址等三层配置,会引起地址冲突,导致故障在网络中扩大。为了提高系统的可用性,当IRF分裂时我们就需要一种机制,能够检测出网络中同时存在多个IRF,并进行相应的处理,尽量降低IRF分裂对业务的影响。MAD(Multi-Active Detection,多Active检测)就是这样一种检测和处理机制。它主要提供以下功能:
(1) 分裂检测
通过BFD(Bidirectional Forwarding Detection,双向转发检测)来检测网络中是否存在多个IRF。同一IRF中可以配置一个或多个检测机制,详细信息,请参考“1.7.8 MAD配置”。
(2) 冲突处理
IRF分裂后,通过分裂检测机制IRF会检测到网络中存在其它正常工作的IRF。
对于LACP MAD和BFD MAD检测,冲突处理会先比较两个IRF中成员设备的数量,数量多的IRF继续工作;数量少的迁移到Recovery状态(即禁用状态);如果成员数量相等,则主设备成员编号小的IRF继续正常工作;其它IRF迁移到Recovery状态(即禁用状态)。
IRF迁移到Recovery状态后会关闭该IRF中所有成员设备上除保留端口以外的其它所有物理端口(通常为业务接口),以保证该IRF不能再转发业务报文。缺省情况下,只有IRF物理端口是保留端口,可通过mad exclude interface命令配置。
(3) MAD故障恢复
IRF链路故障导致IRF分裂,从而引起多Active冲突。因此修复故障的IRF链路,让冲突的IRF重新合并为一个IRF,就能恢复MAD故障。
· 如果出现故障的是继续正常工作的IRF,则在进行MAD故障恢复前,可以通过命令行先启用Recovery状态的IRF,让它接替原IRF工作,以便保证业务尽量少受影响,再恢复MAD故障。
· 如果在MAD故障恢复前,处于Recovery状态的IRF也出现了故障,则需要将故障IRF和故障链路都修复后,才能让冲突的IRF重新合并为一个IRF,恢复MAD故障。
关于BFD的详细介绍请参见“可靠性配置指导”中的“BFD”。
· 通常情况下,必须是同型号的产品才能组成IRF。
· 设备最多支持2个成员设备。
· IRF中所有成员设备的软件版本必须相同,如果有软件版本不同的设备要加入IRF,请确保IRF的启动文件同步加载功能处于开启状态。
· 如果两台物理设备的桥MAC相同,则它们不能合并为一个IRF。IRF的桥MAC不受此限制,只要成员设备自身桥MAC唯一即可。
· 在组成IRF的所有设备上,ACL硬件模式的相关配置都必须相同,否则这些设备将无法组成IRF。有关ACL硬件模式的详细介绍,请参见“ACL和QoS配置指导”中的“ACL”。
· 在组成IRF的所有成员设备上,确保IRF端口绑定的物理端口类型、数量一致。
· 设备仅支持IRF物理端口直连组建IRF,不支持跨中间设备。
· 以太网接口作为IRF物理端口与IRF端口绑定后,只支持shutdown、description和flow-interval命令,这些命令的详细介绍,请参见“接口管理命令参考”中的“以太网接口”。
· 在LACP MAD检测组网中,如果中间设备本身也是一个IRF系统,则必须通过配置确保其IRF域编号与被检测的IRF系统不同,否则可能造成检测异常,甚至导致业务中断。在BFD MAD检测组网中,IRF域编号为可选配置。
· 如需关闭(shutdown)主设备的所有堆叠口,在进行此操作前请确保主设备优先级高于备设备。
· IRF域编号是一个全局变量,IRF中的所有成员设备都共用这个IRF域编号。不要随意修改。
· IRF迁移到Recovery状态后会关闭该IRF中所有成员设备上除保留端口以外的其它所有物理端口(通常为业务接口),保留端口可通过mad exclude interface命令配置。
· 如果接口因为多Active冲突被关闭,则只能等IRF恢复到正常工作状态后,接口才能自动被激活,不能通过undo shutdown命令来激活。
· 当IRF设备上存在跨成员设备的聚合链路时,请不要使用undo irf mac-address persistent命令配置IRF的桥MAC立即变化,否则可能会导致流量中断。
成员编号、成员优先级、IRF端口配置方式不同,时效不同。建议用户使用以下步骤来建立IRF:
(1) 进行网络规划,明确使用哪台设备作为主设备、各成员设备的编号以及成员设备之间的物理连接;
(2) 连接IRF物理接口,确保IRF链路处于up状态;
(3) 访问IRF;
(4) 根据需要,在IRF模式下快速配置IRF或者使用多条命令逐个配置IRF参数,比如原IRF物理端口故障需要绑定其它IRF物理端口等。
(5) 将当前配置保存到设备的下次启动配置文件,以便设备重启后,IRF配置能够继续生效;
表1-1 IRF配置任务简介
配置任务 |
说明 |
详细配置 |
|
访问IRF |
必选 |
||
IRF模式下快速配置IRF |
和“IRF模式下配置IRF”二者选其一 |
||
IRF模式下配置IRF |
配置成员编号 |
必选 |
|
配置成员优先级 |
可选 |
||
配置IRF端口 |
必选 |
||
配置成员设备的描述信息 |
可选 |
||
配置IRF链路的负载分担类型 |
可选 |
||
配置IRF的桥MAC保留时间 |
可选 |
||
开启IRF系统启动文件的自动加载功能 |
可选 |
||
MAD配置 |
可选 |
IRF的访问方式如下:
· 本地登录:通过任意成员设备的Console口登录。
· 远程登录:给任意成员设备的任意三层接口配置IP地址,并且路由可达,就可以通过Telnet、WEB、SNMP等方式进行远程登录。
不管使用哪种方式登录IRF,实际上登录的都是主设备。主设备是IRF系统的配置和控制中心,在主设备上配置后,主设备会将相关配置同步给从设备,以便保证主设备和从设备配置的一致性。
使用该功能,用户可以通过一条命令配置IRF的基本参数,包括新成员编号、域编号、绑定物理端口,简化了配置步骤,达到快速配置IRF的效果。
在配置该功能时,有两种方式:
· 交互模式:用户输入easy-irf,回车,在交互过程中输入具体参数的值。
· 非交互模式,在输入命令行时直接指定所需参数的值。
两种方式的配置效果相同,如果用户对本功能不熟悉,建议使用交互模式。
配置时,需要注意的是:
· 如果给成员设备指定新的成员编号,该成员设备会立即自动重启,以使新的成员编号生效。
· 多次使用该功能,修改域编号/优先级/IRF物理端口时,域编号和优先级的新配置覆盖旧配置,IRF物理端口的配置会新旧进行叠加。如需删除旧的IRF物理端口配置,需要在IRF端口视图下,执行undo port group interface命令。一个IRF端口最多可绑定2个IRF物理端口。
· 在交互模式下,为IRF端口指定物理端口时,请注意:
¡ 接口类型和接口编号间不能有空格。
¡ 不同物理接口之间用英文逗号分隔。
¡ 有些接口板出厂时已将接口分组,如果要将该组内的某接口和IRF端口绑定,需要将该组的所有接口都和IRF端口绑定。
表1-2 快速配置IRF
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
快速配置IRF |
easy-irf [ member member-id [ renumber new-member-id ] domain domain-id [ priority priority ] [ irf-port1 interface-list1 ] [ irf-port2 interface-list2 ] ] |
若在多成员设备的IRF环境中使用该命令,请确保配置的新成员编号与当前IRF中的成员编号不冲突 |
在IRF中以成员编号标识设备,IRF端口和成员优先级的配置也和成员编号紧密相关。所以,修改设备成员编号可能导致配置发生变化或者失效,请慎重使用。
配置成员编号时,请确保该编号在IRF中唯一。如果存在相同的成员编号,则不能建立IRF。如果新设备加入IRF,但是该设备与已有成员设备的编号冲突,则该设备不能加入IRF。
· 修改成员编号后,但是没有重启本设备,则原编号继续生效,各物理资源仍然使用原编号来标识。
· 修改成员编号后,如果保存当前配置,重启本设备,则新的成员编号生效,需要用新编号来标识物理资源;配置文件中,只有IRF端口的编号以及IRF端口下的配置、成员优先级会继续生效,其它与成员编号相关的配置(比如普通物理接口的配置等)不再生效,需要重新配置。
表1-3 配置成员编号
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置成员编号 |
irf member member-id renumber new-member-id |
缺省情况下,设备的成员编号均为1 |
在主设备选举过程中,优先级数值大的成员设备将优先被选举成为主设备。
表1-4 配置成员优先级
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置IRF中指定成员设备的优先级 |
irf member member-id priority priority |
缺省情况下,设备的成员优先级均为1 |
配置时,请注意:以太网接口作为IRF物理端口与IRF端口绑定后,只支持shutdown、description和flow-interval命令,这些命令的详细介绍,请参见“接口管理命令参考”中的“以太网接口”。
表1-5 配置IRF端口
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入IRF物理端口视图 |
interface interface-type interface-number |
- |
关闭接口 |
shutdown |
如果允许关闭当前端口,则直接在该接口视图下执行shutdown命令即可;如果不能关闭该端口,请根据系统提示信息关闭该端口直连的邻居设备上的端口 |
退回系统视图 |
quit |
- |
进入IRF端口视图 |
irf-port member-id/irf-port-number |
- |
将IRF端口和IRF物理端口绑定 |
port group interface interface-type interface-number |
缺省情况下,IRF端口没有和任何IRF物理端口绑定 多次执行该命令,可以将IRF端口与多个IRF物理端口绑定,以实现IRF链路的备份或负载分担,从而提高IRF链路的带宽和可靠性。最多可以绑定2个物理端口。当绑定的物理端口数达到上限时,该命令将执行失败 |
退回到系统视图 |
quit |
- |
进入IRF物理端口视图 |
interface interface-type interface-number |
- |
激活接口 |
undo shutdown |
- |
退回系统视图 |
quit |
- |
保存当前配置 |
save |
激活IRF端口会引起IRF合并,进而设备需要重启。为了避免重启后配置丢失,请在激活IRF端口前先将当前配置保存到下次启动配置文件 |
激活IRF端口下的配置 |
irf-port-configuration active |
IRF物理线缆连接好,并将IRF物理端口添加到IRF端口后,必须通过该命令手工激活IRF端口的配置才能形成IRF |
当网络中存在多个IRF或者同一IRF中存在多台成员设备且物理位置比较分散(比如在不同楼层甚至不同建筑)时,为了确认成员设备的物理位置,在组建IRF时可以将物理位置设置为成员设备的描述信息,以便后期维护。
表1-6 配置成员设备的描述信息
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置IRF中指定成员设备的描述信息 |
缺省情况下,未配置成员设备的描述信息 |
在配置负载分担模式前,IRF端口必须至少和一个IRF物理端口绑定。否则,负载分担模式将配置失败。
当IRF端口与多个IRF物理端口绑定时,成员设备之间就会存在多条IRF链路。通过改变IRF链路负载分担的类型,可以灵活地实现成员设备间流量的负载分担。用户既可以指定系统按照报文携带的IP地址、MAC地址等信息之一或其组合来选择所采用的负载分担类型。
用户可以通过全局配置(系统视图下)和端口下(IRF端口视图下)配置的方式设置IRF链路的负载分担模式:
· 在系统视图下的配置对所有IRF端口生效;
· 在IRF端口视图下的配置只对当前IRF端口下的IRF链路生效;
· IRF端口会优先采用端口下的配置。如果端口下没有配置,则采用全局配置。
表1-7 全局配置IRF链路的负载分担类型
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置IRF链路的负载分担模式 |
irf-port global load-sharing mode { destination-ip | destination-mac | source-ip | source-mac } * |
多次执行该命令配置不同负载分担模式时,以最新的配置为准 |
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入IRF端口视图 |
irf-port member-id/irf-port-number |
- |
配置IRF链路的负载分担模式 |
irf-port load-sharing mode { destination-ip | destination-mac | source-ip | source-mac } * |
多次执行该命令配置不同负载分担模式时,以最新的配置为准 |
· 桥MAC变化可能导致流量短时间中断,请谨慎配置。
· 如果两个IRF的桥MAC相同,则它们不能合并为一个IRF。IRF的桥MAC不受此限制,只要成员设备自身桥MAC唯一即可。
· 当IRF设备上存在跨成员设备的聚合链路时,请不要使用undo irf mac-address persistent命令配置IRF的桥MAC立即变化,否则可能会导致流量中断。
桥MAC是设备作为网桥与外界通信时使用的MAC地址。一些二层协议会使用桥MAC标识不同设备,所以网络上的桥设备必须具有唯一的桥MAC。如果网络中存在桥MAC相同的设备,则会引起桥MAC冲突,从而导致通信故障。
IRF作为一台虚拟设备与外界通信,也具有唯一的桥MAC,称为IRF桥MAC。IRF会选用某台成员设备的桥MAC作为IRF的桥MAC,这台成员设备被称为IRF桥MAC拥有者。通常情况下,IRF使用主设备的桥MAC作为IRF桥MAC。
因为桥MAC冲突会引起通信故障,桥MAC的切换又会导致流量中断。因此,用户需要根据网络实际情况配置IRF桥MAC的保留时间:
· 如果配置了IRF桥MAC保留时间为6分钟,则当IRF桥MAC拥有者离开IRF时,IRF桥MAC在6分钟内保持不变化;如果6分钟后IRF桥MAC拥有者没有回到IRF,则使用新选举的主设备的桥MAC作为IRF桥MAC。该配置适用于IRF桥MAC拥有者短时间内离开又回到IRF的情况(比如设备重启或者链路临时故障等),可以减少不必要的桥MAC切换导致的流量中断。
· 如果配置了IRF桥MAC保留时间为永久,则无论IRF桥MAC拥有者是否离开IRF,IRF桥MAC始终保持不变。
· 如果配置了IRF桥MAC不保留,则当IRF桥MAC拥有者离开IRF时,系统会立即使用IRF中当前主设备的桥MAC做IRF桥MAC。
表1-9 配置IRF的桥MAC保留时间
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置IRF的桥MAC会永久保留 |
irf mac-address persistent always |
IRF桥MAC的保留时间为6分钟 |
配置IRF的桥MAC的保留时间为6分钟 |
irf mac-address persistent timer |
|
配置IRF的桥MAC不保留,会立即变化 |
undo irf mac-address persistent |
加载启动软件包需要一定时间,在加载期间,请不要手工重启处于加载状态的从设备,否则,会导致该从设备加载启动软件包失败而不能启动。用户可打开日志信息显示开关,并根据日志信息的内容来判断加载过程是否开始以及是否结束。
如果新设备加入IRF,并且新设备的软件版本和主设备的软件版本不一致,则新加入的设备不能正常启动。此时:
· 如果没有开启启动文件的自动加载功能,则需要用户手工升级新设备后,再将新设备加入IRF。或者在主设备上开启启动文件的自动加载功能,重启新设备,让新设备重新加入IRF。
· 如果已经开启了启动文件的自动加载功能,则新设备加入IRF时,会与主设备的软件版本号进行比较,如果不一致,则自动从主设备下载启动文件,然后使用新的系统启动文件重启,重新加入IRF。如果新下载的启动文件的文件名与设备上原有启动文件文件名重名,则原有启动文件会被覆盖。
为了能够自动加载成功,请确保从设备存储介质上有足够的空闲空间用于存放新的启动文件。如果从设备存储介质上空闲空间不足,系统会自动删除从设备的当前启动文件来完成加载。如果删除从设备的当前启动文件后空间仍然不足,从设备将无法进行自动加载。此时,需要管理员重启从设备并进入从设备的Boot ROM菜单,删除一些不重要的文件后,再让从设备重新加入IRF。
表1-10 开启IRF系统启动文件的自动加载功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
开启IRF系统启动文件的自动加载功能 |
irf auto-update enable |
缺省情况下,IRF系统启动文件的自动加载功能处于开启状态 |
设备支持的MAD检测方式为:LACP MAD检测、BFD MAD检测。
表1-11 MAD检测机制的比较
MAD检测方式 |
优势 |
限制 |
LACP MAD |
检测速度快,利用现有聚合组网即可实现,无需占用额外接口,利用聚合链路同时传输普通业务报文和MAD检测报文(扩展LACP报文) |
组网中需要使用H3C设备作为中间设备,每个成员设备都需要连接到中间设备 |
BFD MAD |
检测速度较快,组网形式灵活,对其它设备没有要求 |
配置专用三层接口,这些接口不能再传输普通业务流量 如果不使用中间设备,则要求成员设备间是全链接,即每个成员设备都必须和其它所有成员设备相连。该链路专用于MAD检测,不能再传输普通业务流量。该方式适用于成员设备少,并且物理距离比较近的组网环境 如果使用中间设备,组网时每个成员设备都需要连接到中间设备,这些BFD链路专用于MAD检测 |
(1) LACP MAD检测原理
LACP MAD检测是通过扩展LACP协议报文内容实现的,即在LACP协议报文的扩展字段内定义一个新的TLV(Type/Length/Value,类型/长度/值)数据域——用于交互IRF的DomainID(域编号)和ActiveID(等于主设备的成员编号)。
开启LACP MAD检测后,成员设备通过LACP协议报文和其它成员设备交互DomainID和ActiveID信息。
· 当成员设备收到LACP协议报文后,先比较DomainID。如果DomainID相同,再比较ActiveID;如果DomainID不同,则认为报文来自不同IRF,不再进行MAD处理。
· 如果ActiveID相同,则表示IRF正常运行,没有发生多Active冲突;如果ActiveID值不同,则表示IRF分裂,检测到多Active冲突。
(2) LACP MAD检测组网要求
LACP MAD检测方式组网中需要使用H3C设备作为中间设备。通常采用如图1-7所示的组网:成员设备之间通过Device交互LACP扩展报文。
图1-7 LACP MAD检测组网示意图
(3) 配置LACP MAD检测
LACP MAD检测的配置步骤为:
· 配置IRF域编号;
· 创建聚合接口;(中间设备上也需要进行该项配置)
· 将聚合接口的工作模式配置为动态聚合模式;(中间设备上也需要进行该项配置)
· 在动态聚合接口下开启LACP MAD检测功能;
· 给聚合组添加成员端口。(中间设备上也需要进行该项配置)
表1-12 配置LACP MAD检测
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置IRF域编号 |
irf domain domain-id |
缺省情况下,IRF的域编号为0 |
进入三层聚合接口视图 |
interface route-aggregation interface-number |
|
配置聚合组工作在动态聚合模式下 |
link-aggregation mode dynamic |
缺省情况下,聚合组工作在静态聚合模式下 |
开启LACP MAD检测功能 |
mad enable |
缺省情况下,LACP MAD检测功能处于关闭状态 |
退回系统视图 |
quit |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
将以太网接口加入聚合组 |
port link-aggregation group group-id |
- |
(1) BFD MAD检测原理
BFD MAD检测是通过BFD协议来实现的。要使BFD MAD检测功能正常运行,除在三层接口下开启BFD MAD检测功能外,还需要在该接口上配置MAD IP地址。MAD IP地址与普通IP地址不同的地方在于:MAD IP地址与成员设备是绑定的,IRF中的每个成员设备上都需要配置,且所有成员设备的MAD IP必须属于同一网段。
· 当IRF正常运行时,只有主设备上配置的MAD IP地址生效,从设备上配置的MAD IP地址不生效,BFD会话处于down状态;(使用display bfd session命令查看BFD会话的状态。如果Session State显示为Up,则表示激活状态;如果显示为Down,则表示处于down状态)
· 当IRF分裂形成多个IRF时,不同IRF中主设备上配置的MAD IP地址均会生效,BFD会话被激活,此时会检测到多Active冲突。
(2) BFD MAD检测组网要求
BFD MAD检测方式可以使用中间设备来进行连接,也可以不使用中间设备。在使用中间设备时,,典型组网如图1-8所示。用于BFD MAD检测的以太网端口需要属于同一聚合组,在该聚合接口视图下为不同成员设备配置同一网段内的不同MAD IP地址。
图1-8 使用中间设备实现BFD MAD检测组网示意图
在没有中间设备时,需要采用如图1-9所示的组网方式:每台成员设备必须和其它所有成员设备之间使用以太网端口建立BFD MAD检测链路(即成员设备之间是全连接组网)。这些链路连接的接口必须属于同一网段,在接口视图下给不同成员设备配置同一网段下的不同IP地址。
图1-9 不使用中间设备实现BFD MAD检测组网示意图
开启BFD MAD检测功能的三层接口只能专用于BFD MAD检测,这些接口下建议只配置mad bfd enable和mad ip address命令。如果用户配置了其它命令,可能会影响该业务以及BFD MAD检测功能的运行。
(3) 配置BFD MAD检测
配置BFD MAD检测时,请遵循以下要求:
· 如果网络中存在多个IRF,在配置BFD MAD时,各IRF必须使用不同的借口作为BFD MAD检测专用接口。
· 在用于BFD MAD检测的接口下必须使用mad ip address命令配置MAD IP地址,而不要配置其它IP地址(包括使用ip address命令配置的普通IP地址、VRRP虚拟IP地址等),以免影响MAD检测功能。
使用以太网端口进行BFD MAD检测功能的配置顺序为:
· 创建一个新三层聚合接口,专用于BFD MAD检测;(对于使用中间设备的组网,中间设备上也需要进行该项配置)
· 确定哪些物理端口用于BFD MAD检测,并将这些端口都添加到BFD MAD检测专用三层聚合接口中;(如果用到中间设备组网,中间设备上也需要进行该项配置)
· 创建三层聚合接口专用于BFD MAD检测,在接口下开启BFD MAD检测功能,并配置MAD IP地址。
表1-13 配置使用以太网端口进行BFD MAD检测
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
(可选)配置IRF域编号 |
irf domain domain-id |
缺省情况下,IRF的域编号为0 |
创建一个新三层聚合接口专用于BFD MAD检测 |
|
|
退回系统视图 |
quit |
- |
进入以太网接口视图 |
interface interface-type interface-number |
- |
将端口加入BFD MAD检测专用聚合组 |
port link-aggregation group group-id |
|
退回系统视图 |
quit |
- |
开启BFD MAD检测功能 |
mad bfd enable |
缺省情况下,BFD MAD检测功能处于关闭状态 |
给指定成员设备配置MAD IP地址 |
mad ip address ip-address { mask | mask-length } member member-id |
缺省情况下,未配置成员设备的MAD IP地址 |
IRF系统在进行多Active处理的时候,缺省情况下,会关闭Recovery状态设备上的所有业务接口。如果接口有特殊用途需要保持up状态(比如Telnet登录接口等),则用户可以通过命令行将这些接口配置为保留接口。
表1-14 配置保留接口
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置保留接口,当设备进入Recovery状态时,该接口不会被关闭 |
mad exclude interface interface-type interface-number |
缺省情况下,设备进入Recovery状态时会自动关闭本设备上所有的业务接口 IRF物理端口自动作为保留接口,不需要配置 |
IRF链路故障将一个IRF分裂为两个IRF,从而导致多Active冲突。当系统检测到多Active冲突后,两个冲突的IRF会进行竞选,主设备成员编号小的获胜,继续正常运行,失败的IRF会转入Recovery状态,暂时不能转发业务报文。此时通过修复IRF链路可以恢复IRF系统(设备会尝试自动修复IRF链路,如果修复失败的话,则需要用户手工修复)。
设备处于正常工作状态的IRF和处于Recovery状态的IRF会自动合并为一个IRF:原Recovery状态IRF中所有成员设备以从设备身份加入原正常工作状态的IRF,原Recovery状态IRF中被强制关闭的业务接口自动恢复到真实的物理状态,整个IRF系统恢复,如图1-10所示。
图1-10 MAD故障恢复(IRF链路故障)
如果MAD故障还没来得及修复而处于正常工作状态的IRF也故障了(原因可能是设备故障或者上下行线路故障),如图1-11所示。此时可以在IRF 2(处于Recovery状态的IRF)上执行mad restore命令,让IRF 2恢复到正常状态,先接替IRF 1工作。然后再修复IRF 1和IRF链路,修复后,两个IRF发生合并,整个IRF系统恢复。
图1-11 MAD故障恢复(IRF链路故障+正常工作状态的IRF故障)
表1-15 手动恢复处于Recovery状态的设备
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
将IRF从Recovery状态恢复到正常工作状态 |
mad restore |
- |
在完成上述配置后,在任意视图下执行display命令可以显示配置后IRF的运行情况,通过查看显示信息验证配置的效果。
表1-16 IRF显示和维护
操作 |
命令 |
显示IRF中所有成员设备的相关信息 |
display irf |
查看IRF的拓扑信息 |
display irf topology |
显示IRF链路信息 |
display irf link |
显示IRF配置信息 |
display irf configuration |
显示IRF链路的负载分担模式 |
display irf-port load-sharing mode [ irf-port [ member-id/irf-port-number ] ] |
显示MAD配置信息 |
display mad [ verbose ] |
表1-17 将当前配置保存到设备的下次启动配置文件
操作 |
命令 |
说明 |
将当前配置保存到存储介质的根目录下,并将该文件设置为下次启动配置文件 |
save [ safely ] [ backup | main ] [ force ] |
该命令可在任意视图下执行 |
由于公司人员激增,接入层设备提供的端口数目已经不能满足PC的接入需求。现需要在保护现有投资的基础上扩展端口接入数量,并要求网络易管理、易维护。
图1-12 IRF典型配置组网图(LACP MAD检测方式)
· Device A提供的接入端口数目已经不能满足网络需求,需要另外增加一台设备Device B。(本文以两台设备组成IRF为例,在实际组网中可以根据需要,将多台设备组成IRF,配置思路和配置步骤与本例类似)
· 鉴于IRF技术具有管理简便、网络扩展能力强、可靠性高等优点,所以本例使用IRF技术构建接入层(即在Device A和Device B上配置IRF功能)。
· 为了防止IRF链路故障导致IRF分裂,网络中存在两个配置冲突的IRF,需要启用MAD检测功能。因为网络中有一台中间设备Device C,支持LACP协议,所以我们采用LACP MAD检测。
(1) 配置Device A
# 配置IRF端口1/2,并将它与物理端口Ten-GigabitEthernet1/1/2绑定,并保存配置。
<Sysname> system-view
[Sysname] interface ten-gigabitethernet 1/1/2
[Sysname-Ten-GigabitEthernet1/1/2] shutdown
[Sysname-Ten-GigabitEthernet1/1/2] quit
[Sysname] irf-port 1/2
[Sysname-irf-port1/2] port group interface ten-gigabitethernet 1/1/2
[Sysname-irf-port1/2] quit
[Sysname] interface ten-gigabitethernet 1/1/2
[Sysname-Ten-GigabitEthernet1/1/2] undo shutdown
[Sysname-Ten-GigabitEthernet1/1/2] quit
[Sysname] save
# 激活IRF端口下的配置。
[Sysname] irf-port-configuration active
(2) 配置Device B
# 将Device B的成员编号配置为2,并重启设备使新编号生效。
<Sysname> system-view
[Sysname] irf member 1 renumber 2
Warning: Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
[Sysname] quit
<Sysname> reboot
# 参照图1-12进行物理连线。
# 重新登录到设备,配置IRF端口2/1,并将它与物理端口Ten-GigabitEthernet2/1/1绑定,并保存配置。
<Sysname> system-view
[Sysname] interface ten-gigabitethernet 2/1/1
[Sysname-Ten-GigabitEthernet2/1/1] shutdown
[Sysname-Ten-GigabitEthernet2/1/1] quit
[Sysname] irf-port 2/1
[Sysname-irf-port2/1] port group interface ten-gigabitethernet 2/1/1
[Sysname-irf-port2/1] quit
[Sysname] interface ten-gigabitethernet 2/1/1
[Sysname-Ten-GigabitEthernet2/1/1] undo shutdown
[Sysname-Ten-GigabitEthernet2/1/1] quit
[Sysname] save
# 激活IRF端口下的配置。
[Sysname] irf-port-configuration active
(3) Device A和Device B间将会进行主设备竞选,竞选失败的一方将重启,重启完成后,IRF形成。
(4) 配置LACP MAD检测
# 设置IRF域编号为1。
<Sysname> system-view
[Sysname] irf domain 1
# 创建一个动态聚合接口,并开启LACP MAD检测功能。
[Sysname] interface route-aggregation 2
[Sysname-Route-Aggregation2] link-aggregation mode dynamic
[Sysname-Route-Aggregation2] mad enable
You need to assign a domain ID (range: 0-4294967295)
[Current domain is: 1]:
The assigned domain ID is: 1
MAD LACP only enable on dynamic aggregation interface.
[Sysname-Route-Aggregation2] quit
# 在聚合接口中添加成员端口GigabitEthernet1/0/2和GigabitEthernet2/0/1,用于Device A和Device B实现LACP MAD检测。
[Sysname] interface gigabitethernet 1/0/2
[Sysname-GigabitEthernet1/0/2] port link-aggregation group 2
[Sysname-GigabitEthernet1/0/2] quit
[Sysname] interface gigabitethernet 2/0/1
[Sysname-GigabitEthernet2/0/1] port link-aggregation group 2
(5) 配置中间设备Device C
如果中间设备是一个IRF系统,则必须通过配置确保其IRF域编号与被检测的IRF系统不同。
Device C作为中间设备来转发、处理LACP协议报文,协助Device A和Device B进行多Active检测。从节约成本的角度考虑,使用一台支持LACP协议扩展功能的交换机即可。
# 创建一个动态聚合接口。
<Sysname> system-view
[Sysname] interface bridge-aggregation 2
[Sysname-Bridge-Aggregation2] link-aggregation mode dynamic
[Sysname-Bridge-Aggregation2] quit
# 在聚合接口中添加成员端口GigabitEthernet1/0/1和GigabitEthernet1/0/2,用于帮助LACP MAD检测。
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-aggregation group 2
[Sysname-GigabitEthernet1/0/1] quit
[Sysname] interface gigabitethernet 1/0/2
[Sysname-GigabitEthernet1/0/2] port link-aggregation group 2
本举例仅以三层聚合口举例说明。
由于网络规模迅速扩大,当前中心交换机(Device A)转发能力已经不能满足需求,现需要在保护现有投资的基础上将网络转发能力提高一倍,并要求网络易管理、易维护。
图1-13 IRF典型配置组网图(BFD MAD检测方式)
· Device A处于局域网的汇聚层,为了将汇聚层的转发能力提高一倍,需要另外增加一台设备Device B。
· 鉴于IRF技术具有管理简便、网络扩展能力强、可靠性高等优点,所以本例使用IRF技术构建网络汇聚层(即在Device A和Device B上配置IRF功能),接入层设备通过聚合双链路上行。
· 为了防止IRF链路故障导致IRF分裂,网络中存在两个配置冲突的IRF,需要启用MAD检测功能。因为成员设备比较少,我们采用BFD MAD检测方式来监测IRF的状态。
(1) 配置Device A
# 配置IRF端口1/2,并将它与物理端口Ten-GigabitEthernet1/1/2绑定,并保存配置。
<Sysname> system-view
[Sysname] interface ten-gigabitethernet 1/1/2
[Sysname-Ten-GigabitEthernet1/1/2] shutdown
[Sysname-Ten-GigabitEthernet1/1/2] quit
[Sysname] irf-port 1/2
[Sysname-irf-port1/2] port group interface ten-gigabitethernet 1/1/2
[Sysname-irf-port1/2] quit
[Sysname] interface ten-gigabitethernet 1/1/2
[Sysname-Ten-GigabitEthernet1/1/2] undo shutdown
[Sysname-Ten-GigabitEthernet1/1/2] quit
[Sysname] save
# 激活IRF端口下的配置。
[Sysname] irf-port-configuration active
(2) 配置Device B
# 将Device B的成员编号配置为2,并重启设备使新编号生效。
<Sysname> system-view
[Sysname] irf member 1 renumber 2
Warning: Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
[Sysname] quit
<Sysname> reboot
# 参照图1-13进行物理连线。
# 重新登录到设备,配置IRF端口2/1,并将它与物理端口Ten-GigabitEthernet2/1/1绑定,并保存配置。
<Sysname> system-view
[Sysname] interface ten-gigabitethernet 2/1/1
[Sysname-Ten-GigabitEthernet2/1/1] shutdown
[Sysname-Ten-GigabitEthernet2/1/1] quit
[Sysname] irf-port 2/1
[Sysname-irf-port2/1] port group interface ten-gigabitethernet 2/1/1
[Sysname-irf-port2/1] quit
[Sysname] interface ten-gigabitethernet 2/1/1
[Sysname-Ten-GigabitEthernet2/1/1] undo shutdown
[Sysname-Ten-GigabitEthernet2/1/1] quit
[Sysname] save
# 激活IRF端口下的配置。
[Sysname] irf-port-configuration active
(3) Device A和Device B间将会进行主设备竞选,竞选失败的一方将重启,重启完成后,IRF形成。
# 创建三层聚合接口3。
<Sysname> system-view
[Sysname] interface route-aggregation 3
[Sysname-Route-Aggregation3] quit
# 分别将Device A(成员编号为1)上的端口1/0/1和Device B(成员编号为2)上的端口2/0/1加入聚合组3中。
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-aggregation group 3
[Sysname-GigabitEthernet1/0/1] quit
[Sysname] interface gigabitethernet 2/0/1
[Sysname-GigabitEthernet2/0/1] port link-aggregation group 3
[Sysname-GigabitEthernet2/0/1] quit
# 配置三层聚合接口3的MAD IP地址。
[Sysname] interface route-aggregation 3
[Sysname-Route-Aggregation3] mad bfd enable
[Sysname-Route-Aggregation3] mad ip address 192.168.2.1 24 member 1
[Sysname-Route-Aggregation3] mad ip address 192.168.2.2 24 member 2
[Sysname-Route-Aggregation3] quit
# 因为BFD MAD和生成树功能互斥,所以在GigabitEthernet1/0/1和GigabitEthernet2/0/1上关闭生成树协议。
[Sysname] interface gigabitethernet 1/0/1
[Sysname-gigabitethernet-1/0/1] undo stp enable
[Sysname-gigabitethernet-1/0/1] quit
[Sysname] interface gigabitethernet 2/0/1
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!